Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Zirconium dioxide
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Niche uses=== The very low [[thermal conductivity]] of [[cubic zirconia|cubic phase of zirconia]] also has led to its use as a [[thermal barrier coating]], or TBC, in [[jet engine|jet]] and [[diesel engine]]s to allow operation at higher temperatures.<ref>{{cite web |url=https://studylib.net/doc/12141427 |title=Thermal-barrier coatings for more efficient gas-turbine engines |website=studylib.net |language=en |access-date=2018-08-06}}</ref> Thermodynamically, the higher the operation temperature of an engine, [[Carnot heat engine|the greater the possible efficiency]]. Another low-thermal-conductivity use is as a ceramic fiber insulation for crystal growth furnaces, fuel-cell stacks, and infrared heating systems. This material is also used in dentistry in the manufacture of subframes for the construction of [[dental restoration]]s such as [[crown (dentistry)|crowns]] and [[bridge (dentistry)|bridges]], which are then veneered with a conventional [[feldspar|feldspathic]] [[porcelain]] for aesthetic reasons, or of strong, extremely durable dental prostheses constructed entirely from monolithic zirconia, with limited but constantly improving aesthetics.<ref>{{cite journal |first=Panos |last=Papaspyridakos |author2=Kunal Lal |title=Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report |journal=The Journal of Prosthetic Dentistry |volume=100 |issue=3 |year=2008 |pages=165–172 |doi=10.1016/S0022-3913(08)00110-8 |pmid=18762028|doi-access=free }}</ref><ref name=":0">{{Cite journal|last1=Kastyl|first1=Jaroslav|last2=Chlup|first2=Zdenek|last3=Stastny|first3=Premysl|last4=Trunec|first4=Martin|date=2020-08-17|title=Machinability and properties of zirconia ceramics prepared by gelcasting method|url=https://doi.org/10.1080/17436753.2019.1675402|journal=Advances in Applied Ceramics|volume=119|issue=5–6|pages=252–260|doi=10.1080/17436753.2019.1675402|bibcode=2020AdApC.119..252K |hdl=11012/181089 |s2cid=210795876 |issn=1743-6753|hdl-access=free}}</ref><ref>{{Cite patent|number=WO2023025588A1|title=Method for producing granular zirconium oxide|gdate=2023-03-02|invent1=Engels|invent2=Schwendinger|inventor1-first=Alexander|inventor2-first=Bettina|url=https://patents.google.com/patent/WO2023025588A1/en}}</ref> Zirconia stabilized with [[yttria]] (yttrium oxide), known as [[yttria-stabilized zirconia]], can be used as a strong base material in some full ceramic crown restorations.<ref name=":0" /><ref>{{cite book |editor-last1=Shen |editor-first1=James |title=Advanced ceramics for dentistry |date=2013 |publisher=Elsevier/BH |location=Amsterdam |isbn=978-0123946195 |page=271 |edition=1st}}</ref> Transformation-toughened zirconia is used to make [[ceramic knife|ceramic knives]].<ref>{{cite web |url=https://powder.samaterials.com/overview-of-zirconium-dioxide-powder-preparation-uses-safety.html |title=Overview of Zirconium Dioxide Powder: Preparation, Uses, and Safety |website=Stanford Advanced Materials |access-date=Sep 15, 2024}}</ref> Because of the hardness, ceramic-edged cutlery stays sharp longer than steel edged products.<ref>{{cite news |url=https://asia.kyocera.com/products/kitchen/basic_series/serrated_12cm_blade.html |title=Serrated 12cm blade Ceramic Kitchen Knives and Tools |newspaper=Ceramic Kitchen Knives and Tools | Kyocera Asia-Pacific |access-date=4 August 2021}}</ref> Due to its infusibility and brilliant luminosity when [[incandescence|incandescent]], it was used as an ingredient of sticks for [[limelight]].{{citation needed|date=June 2012}} Zirconia has been proposed to [[electrolysis|electrolyze]] [[carbon monoxide]] and oxygen from the [[atmosphere of Mars]] to provide both fuel and oxidizer that could be used as a store of chemical energy for use with surface transportation on Mars. [[Carbon monoxide/oxygen engine]]s have been suggested for early surface transportation use, as both carbon monoxide and oxygen can be straightforwardly produced by zirconia electrolysis without requiring use of any of the Martian water resources to obtain hydrogen, which would be needed for the production of methane or any hydrogen-based fuels.<ref name=landis2001>{{cite journal |first1=Geoffrey A. |last1=Landis |first2=Diane L. |last2=Linne |title=Mars Rocket Vehicle Using In Situ Propellants |journal=Journal of Spacecraft and Rockets |date=2001 |volume=38 |issue=5 |pages=730–35 |doi=10.2514/2.3739|bibcode=2001JSpRo..38..730L }}</ref> Zirconia can be used as [[photocatalysis|photocatalyst]]<ref>{{cite journal |last1=Kohno |first1=Yoshiumi |last2=Tanaka |first2=Tsunehiro |last3=Funabiki |first3=Takuzo |last4=Yoshida |first4=Satohiro |title=Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2 |journal=Journal of the Chemical Society, Faraday Transactions |date=1998 |volume=94 |issue=13 |pages=1875–1880 |doi=10.1039/a801055b}}</ref> since its high [[band gap]] (~ 5 eV)<ref>{{cite journal |last1=Gionco |first1=Chiara |last2=Paganini |first2=Maria C. |last3=Giamello |first3=Elio |last4=Burgess |first4=Robertson |last5=Di Valentin |first5=Cristiana |last6=Pacchioni |first6=Gianfranco |title=Cerium-Doped Zirconium Dioxide, a Visible-Light-Sensitive Photoactive Material of Third Generation |journal=The Journal of Physical Chemistry Letters |date=15 January 2014 |volume=5 |issue=3 |pages=447–451 |doi=10.1021/jz402731s |pmid=26276590 |hdl=2318/141649 |hdl-access=free}}</ref> allows the generation of high-energy electrons and holes. Some studies demonstrated the activity of doped zirconia (in order to increase visible light absorption) in degrading organic compounds<ref>{{cite journal |last1=Yuan |first1=Quan |last2=Liu |first2=Yang |last3=Li |first3=Le-Le |last4=Li |first4=Zhen-Xing |last5=Fang |first5=Chen-Jie |last6=Duan |first6=Wen-Tao |last7=Li |first7=Xing-Guo |last8=Yan |first8=Chun-Hua |title=Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution |journal=Microporous and Mesoporous Materials |date=August 2009 |volume=124 |issue=1–3 |pages=169–178 |doi=10.1016/j.micromeso.2009.05.006|bibcode=2009MicMM.124..169Y }}</ref><ref>{{cite journal |last1=Bortot Coelho |first1=Fabrício |last2=Gionco |first2=Chiara |last3=Paganini |first3=Maria |last4=Calza |first4=Paola |last5=Magnacca |first5=Giuliana |title=Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light |journal=Nanomaterials |date=3 April 2019 |volume=9 |issue=4 |pages=534 |doi=10.3390/nano9040534| pmc=6523972 |pmid=30987140 |doi-access=free}}</ref> and reducing [[hexavalent chromium|Cr(VI)]] from wastewaters.<ref>{{cite journal |last1=Bortot Coelho |first1=Fabrício Eduardo |last2=Candelario |first2=Victor M. |last3=Araújo |first3=Estêvão Magno Rodrigues |last4=Miranda |first4=Tânia Lúcia Santos |last5=Magnacca |first5=Giuliana |title=Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light |journal=Nanomaterials |date=18 April 2020 |volume=10 |issue=4 |pages=779 |doi=10.3390/nano10040779 |pmid=32325680 |pmc=7221772 |issn=2079-4991 |doi-access=free}}</ref> Zirconia is also a potential [[high-κ dielectric]] material with potential applications as an insulator in [[transistor]]s. Zirconia is also employed in the deposition of [[optical coating]]s; it is a high-index material usable from the [[ultraviolet#Subtypes|near-UV]] to the [[infrared#CIE division scheme|mid-IR]], due to its low absorption in this spectral region. In such applications, it is typically deposited by [[physical vapor deposition|PVD]].<ref>{{cite web |title=Zirconium Oxide Zr02 For Optical Coating |website=Materion |url=http://materion.com/ResourceCenter/ProductData/InorganicChemicals/Oxides/BrochuresAndDataSheets/ZirconiumOxideZr02.aspx |access-date=April 30, 2013 |url-status=dead |archive-url=https://web.archive.org/web/20131020212333/http://materion.com/ResourceCenter/ProductData/InorganicChemicals/Oxides/BrochuresAndDataSheets/ZirconiumOxideZr02.aspx |archive-date=October 20, 2013}}</ref> In jewelry making, some watch cases are advertised as being "black zirconium oxide".<ref>{{cite web |url=https://www.omegawatches.com/watches/speedmaster/moonwatch/omega-co-axial-chronograph/31192445101003/ |title=Omega Co-Axial Chronograph 44.25 mm |website=OMEGA Watches |language=en-US |access-date=2016-03-27 |url-status=live |archive-url=https://web.archive.org/web/20160326103447/http://www.omegawatches.com/watches/speedmaster/moonwatch/omega-co-axial-chronograph/31192445101003/ |archive-date=2016-03-26}}</ref> In 2015 Omega released a fully {{chem2|ZrO2}} watch named "The Dark Side of The Moon"<ref>{{Cite web |url=https://www.omegawatches.com/watches/speedmaster/moonwatch/dark-side-of-the-moon/product/ |title=Speedmaster Moonwatch Dark Side Of The Moon {{!}} OMEGA |website=Omega |language=en-GB |access-date=2018-02-08 |url-status=live |archive-url=https://web.archive.org/web/20180209063908/https://www.omegawatches.com/watches/speedmaster/moonwatch/dark-side-of-the-moon/product/ |archive-date=2018-02-09}}</ref> with ceramic case, bezel, pushers, and clasp, advertising it as four times harder than stainless steel and therefore much more resistant to scratches during everyday use. In [[gas tungsten arc welding]], tungsten electrodes containing 1% [[zirconium]] oxide (a.k.a. [[zirconia]]) instead of 2% thorium have good arc starting and current capacity, and are not radioactive.<ref name="electrode-selection">{{cite web |date=2009 |title=Tungsten Selection |url=https://www.arc-zone.com/pdf/SelectingTungsten.pdf |access-date=2015-06-15 |website=Arc-Zone.com |location=Carlsbad, [[California]]}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Zirconium dioxide
(section)
Add topic