Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ultra-wideband
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Radar === Ultra-wideband gained widespread attention for its implementation in [[Synthetic-aperture radar|synthetic aperture radar (SAR)]] technology. Due to its high resolution capacities using lower frequencies, UWB SAR was heavily researched for its object-penetration ability.<ref>{{Cite web|last=Paulose|first=Abraham|date=June 1994|title=High Radar Range Resolution With the Step Frequency Waveform|url=https://apps.dtic.mil/dtic/tr/fulltext/u2/a284611.pdf|archive-url=https://web.archive.org/web/20191101160026/https://apps.dtic.mil/dtic/tr/fulltext/u2/a284611.pdf|url-status=live|archive-date=November 1, 2019|access-date=November 4, 2019|website=Defense Technical Information Center}}</ref><ref>{{Cite news|last=Frenzel|first=Louis|date=November 11, 2002|title=Ultrawideband Wireless: Not-So-New Technology Comes Into Its Own|work=Electronic Design|url=https://www.electronicdesign.com/communications/ultrawideband-wireless-not-so-new-technology-comes-its-own|access-date=November 4, 2019}}</ref><ref>{{Cite web|last1=Fowler|first1=Charles|last2=Entzminger|first2=John|last3=Corum|first3=James|date=November 1990|title=Assessment of Ultra-Wideband (UWB) Technology|url=https://www.vtvt.ece.vt.edu/research/references/uwb/overview/REPORT.pdf|access-date=November 4, 2019|website=Virginia Tech VLSI for Telecommunications}}</ref> Starting in the early 1990s, the [[United States Army Research Laboratory|U.S. Army Research Laboratory (ARL)]] developed various stationary and mobile ground-, foliage-, and wall-penetrating radar platforms that served to detect and identify buried IEDs and hidden adversaries at a safe distance. Examples include the [[railSAR]], the [[boomSAR]], the [[SIRE Radar|SIRE radar]], and the [[SAFIRE radar]].<ref>{{Cite journal|last1=Ranney|first1=Kenneth|last2=Phelan|first2=Brian|last3=Sherbondy|first3=Kelly|last4=Getachew|first4=Kirose|last5=Smith|first5=Gregory|last6=Clark|first6=John|last7=Harrison|first7=Arthur|last8=Ressler|first8=Marc|last9=Nguyen|first9=Lam|last10=Narayan|first10=Ram|editor1-first=Kenneth I|editor1-last=Ranney|editor2-first=Armin|editor2-last=Doerry|date=May 1, 2017|title=Initial processing and analysis of forward- and side-looking data from the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar|journal=Radar Sensor Technology XXI|volume=10188|pages=101881J|bibcode=2017SPIE10188E..1JR|doi=10.1117/12.2266270|s2cid=126161941}}</ref><ref>{{Cite journal|last=Dogaru|first=Traian|date=March 2019|title=Imaging Study for Small Unmanned Aerial Vehicle (UAV)-Mounted Ground-Penetrating Radar: Part I β Methodology and Analytic Formulation|url=https://www.arl.army.mil/arlreports/2019/ARL-TR-8654.pdf|archive-url=https://web.archive.org/web/20191104144821/https://www.arl.army.mil/arlreports/2019/ARL-TR-8654.pdf|url-status=dead|archive-date=November 4, 2019|journal=CCDC Army Research Laboratory}}</ref> ARL has also investigated the feasibility of whether UWB radar technology can incorporate Doppler processing to estimate the velocity of a moving target when the platform is stationary.<ref>{{Cite journal|last=Dogaru|first=Traian|date=March 2013|title=Doppler Processing with Ultra-wideband (UWB) Impulse Radar|url=https://www.arl.army.mil/arlreports/2013/technical-report.cfm?id=7015|archive-url=https://web.archive.org/web/20180827174042/https://www.arl.army.mil/arlreports/2013/technical-report.cfm?id=7015|url-status=dead|archive-date=August 27, 2018|journal=U.S. Army Research Laboratory}}</ref> While a 2013 report highlighted the issue with the use of UWB waveforms due to target range migration during the integration interval, more recent studies have suggested that UWB waveforms can demonstrate better performance compared to conventional Doppler processing as long as a correct [[matched filter]] is used.<ref>{{Cite journal|last=Dogaru|first=Traian|date=January 1, 2018|title=Doppler Processing with Ultra-Wideband (UWB) Radar Revisited|url=http://www.dtic.mil/docs/citations/AD1047118|journal=U.S. Army Research Laboratory|via=Defense Technical Information Center}}{{dead link|date=June 2022|bot=medic}}{{cbignore|bot=medic}}</ref> Ultra-wideband pulse [[Doppler radar]]s have also been used to monitor vital signs of the human body, such as heart rate and respiration signals as well as human gait analysis and fall detection. It serves as a potential alternative to [[Continuous-wave radar|continuous-wave radar systems]] since it involves less power consumption and a high-resolution range profile. However, its low signal-to-noise ratio has made it vulnerable to errors.<ref>{{Cite journal|last1=Ren|first1=Lingyun|last2=Wang|first2=Haofei|last3=Naishadham|first3=Krishna|last4=Kilic|first4=Ozlem|last5=Fathy|first5=Aly|date=August 18, 2016|title=Phase-Based Methods for Heart Rate Detection Using UWB Impulse Doppler Radar|journal=IEEE Transactions on Microwave Theory and Techniques|volume=64|issue=10|pages=3319β3331|bibcode=2016ITMTT..64.3319R|doi=10.1109/TMTT.2016.2597824|s2cid=10323361}}</ref><ref>{{Cite journal|last1=Ren|first1=Lingyun|last2=Tran|first2=Nghia|last3=Foroughian|first3=Farnaz|last4=Naishadham|first4=Krishna|last5=Piou|first5=Jean|last6=Kilic|first6=Ozlem|date=May 8, 2018|title=Short-Time State-Space Method for Micro-Doppler Identification of Walking Subject Using UWB Impulse Doppler Radar|journal=IEEE Transactions on Microwave Theory and Techniques|volume=66|issue=7|pages=3521β3534|bibcode=2018ITMTT..66.3521R|doi=10.1109/TMTT.2018.2829523|s2cid=49558032}}</ref> Ultra-wideband is also used in "see-through-the-wall" precision radar-imaging technology,<ref name="TDC">{{cite web|title=Time Domain Corp.'s sense-through-the-wall technology|url=http://www.timedomain.com/news/wall.php|access-date=17 April 2018|website=timedomain.com}}</ref><ref name="Thales">[http://ukgrads.thalesgroup.com/Files/TRT%20UWB%20radar.pdf Thales Group's through-the-wall imaging system]</ref><ref name="ThroughWallImaging">Michal Aftanas [http://www.aftanas.sk/aftanas/publications/Disertation_Aftanas.pdf Through-Wall Imaging with UWB Radar System] Dissertation Thesis, 2009</ref> precision locating and tracking (using distance measurements between radios), and precision time-of-arrival-based localization approaches.<ref name="UWB_TOA">{{Cite web |url=http://www.ecti-thailand.org/assets/papers/177_pub_15.pdf |title=Performance of Ultra-Wideband Time-of-Arrival Estimation Enhanced With Synchronization Scheme |access-date=2010-01-19 |archive-date=2011-07-26 |archive-url=https://web.archive.org/web/20110726013357/http://www.ecti-thailand.org/assets/papers/177_pub_15.pdf |url-status=dead }}</ref> UWB radar has been proposed as the active sensor component in an [[Automatic Target Recognition]] application, designed to detect humans or objects that have fallen onto subway tracks.<ref>{{cite journal|last1=MrouΓ©|first1=A.|last2=Heddebaut|first2=M.|last3=Elbahhar|first3=F.|last4=Rivenq|first4=A.|last5=Rouvaen|first5=J-M|year=2012|title=Automatic radar target recognition of objects falling on railway tracks|journal=Measurement Science and Technology|volume=23|issue=2|pages=025401|bibcode=2012MeScT..23b5401M|doi=10.1088/0957-0233/23/2/025401|s2cid=119691977 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ultra-wideband
(section)
Add topic