Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Taylor series
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==List of Maclaurin series of some common functions== {{see also|List of mathematical series}} Several important Maclaurin series expansions follow. All these expansions are valid for complex arguments {{mvar|x}}. === Exponential function === [[File:Exp series.gif|right|thumb|The [[exponential function]] {{math|''e''<sup>''x''</sup>}} (in blue), and the sum of the first {{math|''n'' + 1}} terms of its Taylor series at 0 (in red).]] The [[exponential function]] <math>e^x</math> (with base {{mvar|[[e (mathematics)|e]]}}) has Maclaurin series{{sfn|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA69 69]}} <math display="block"> e^{x} = \sum^{\infty}_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots. </math> It converges for all {{mvar|x}}. The exponential [[generating function]] of the [[Bell number]]s is the exponential function of the predecessor of the exponential function: <math display="block">\exp(\exp{x}-1) = \sum_{n=0}^{\infty} \frac{B_n}{n!}x^{n}</math> === Natural logarithm === The [[natural logarithm]] (with base {{mvar|[[e (mathematics)|e]]}}) has Maclaurin series<ref name="bileodeau-abramowitz">{{multiref |{{harvnb|Bilodeau|Thie|Keough|2010|p=[https://books.google.com/books?id=nsHisqNlsuIC&pg=PA252 252]}} |{{harvnb|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA15 15]}} }}</ref> <math display="block"> \begin{align} \ln(1-x) &= - \sum^{\infty}_{n=1} \frac{x^n}n = -x - \frac{x^2}2 - \frac{x^3}3 - \cdots , \\ \ln(1+x) &= \sum^\infty_{n=1} (-1)^{n+1}\frac{x^n}n = x - \frac{x^2}2 + \frac{x^3}3 - \cdots . \end{align}</math> The last series is known as [[Mercator series]], named after [[Nicholas Mercator]] (since it was published in his 1668 treatise ''Logarithmotechnia'').{{sfn|Hofmann|1939}} Both of these series converge for <math>|x| < 1</math>. (In addition, the series for {{math|ln(1 β ''x'')}} converges for {{math|''x'' {{=}} β1}}, and the series for {{math|ln(1 + ''x'')}} converges for {{math|''x'' {{=}} 1}}.)<ref name="bileodeau-abramowitz" /> === Geometric series === The [[geometric series]] and its derivatives have Maclaurin series <math display="block">\begin{align} \frac{1}{1-x} &= \sum^\infty_{n=0} x^n \\ \frac{1}{(1-x)^2} &= \sum^\infty_{n=1} nx^{n-1} \\ \frac{1}{(1-x)^3} &= \sum^\infty_{n=2} \frac{(n-1)n}{2} x^{n-2}. \end{align}</math> All are convergent for <math>|x| < 1</math>. These are special cases of the [[#Binomial series|binomial series]] given in the next section. === Binomial series === The [[binomial series]] is the power series <math display="block">(1+x)^\alpha = \sum_{n=0}^\infty \binom{\alpha}{n} x^n</math> whose coefficients are the generalized [[binomial coefficient]]s{{sfn|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA14 14]}} <math display="block">\binom{\alpha}{n} = \prod_{k=1}^n \frac{\alpha-k+1}k = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}.</math> (If {{math|1= ''n'' = 0}}, this product is an [[empty product]] and has value 1.) It converges for <math>|x| < 1</math> for any real or complex number {{mvar|Ξ±}}. When {{math|1=''Ξ±'' = β1}}, this is essentially the infinite geometric series mentioned in the previous section. The special cases {{math|1=''Ξ±'' = {{sfrac|1|2}}}} and {{math|1=''Ξ±'' = β{{sfrac|1|2}}}} give the [[square root]] function and its [[multiplicative inverse|inverse]]:{{sfn|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA15 15]}} <math display="block">\begin{align} (1+x)^\frac{1}{2} &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots &= \sum^{\infty}_{n=0} \frac{(-1)^{n-1}(2n)!}{4^n (n!)^2 (2n-1)} x^n, \\ (1+x)^{-\frac{1}{2}} &= 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots &= \sum^{\infty}_{n=0} \frac{(-1)^n(2n)!}{4^n (n!)^2} x^n. \end{align} </math> When only the [[linear approximation|linear term]] is retained, this simplifies to the [[binomial approximation]]. === Trigonometric functions === The usual [[trigonometric function]]s and their inverses have the following Maclaurin series:{{sfn|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA75 75], [https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA81 81]}} <math display="block">\begin{align} \sin x &= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} &&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots && \text{for all } x\\[6pt] \cos x &= \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} &&= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots && \text{for all } x\\[6pt] \tan x &= \sum^{\infty}_{n=1} \frac{B_{2n} (-4)^n \left(1-4^n\right)}{(2n)!} x^{2n-1} &&= x + \frac{x^3}{3} + \frac{2 x^5}{15} + \cdots && \text{for }|x| < \frac{\pi}{2}\\[6pt] \sec x &= \sum^{\infty}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} &&=1+\frac{x^2}{2}+\frac{5x^4}{24}+\cdots && \text{for }|x| < \frac{\pi}{2}\\[6pt] \arcsin x &= \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} &&=x+\frac{x^3}{6}+\frac{3x^5}{40}+\cdots && \text{for }|x| \le 1\\[6pt] \arccos x &=\frac{\pi}{2}-\arcsin x\\&=\frac{\pi}{2}- \sum^{\infty}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}&&=\frac{\pi}{2}-x-\frac{x^3}{6}-\frac{3x^5}{40}-\cdots&& \text{for }|x| \le 1\\[6pt] \arctan x &= \sum^{\infty}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1} &&=x-\frac{x^3}{3} + \frac{x^5}{5}-\cdots && \text{for }|x| \le 1,\ x\neq\pm i \end{align}</math> All angles are expressed in [[radian]]s. The numbers {{math|''B<sub>k</sub>''}} appearing in the expansions of {{math|tan ''x''}} are the [[Bernoulli numbers]]. The {{math|''E''<sub>''k''</sub>}} in the expansion of {{math|sec ''x''}} are [[Euler number]]s.{{sfn|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA75 75]}} === Hyperbolic functions === The [[hyperbolic function]]s have Maclaurin series closely related to the series for the corresponding trigonometric functions:{{sfn|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA85 85]}} <math display="block">\begin{align} \sinh x &= \sum^{\infty}_{n=0} \frac{x^{2n+1}}{(2n+1)!} &&= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots && \text{for all } x\\[6pt] \cosh x &= \sum^{\infty}_{n=0} \frac{x^{2n}}{(2n)!} &&= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots && \text{for all } x\\[6pt] \tanh x &= \sum^{\infty}_{n=1} \frac{B_{2n} 4^n \left(4^n-1\right)}{(2n)!} x^{2n-1} &&= x-\frac{x^3}{3}+\frac{2x^5}{15}-\frac{17x^7}{315}+\cdots && \text{for }|x| < \frac{\pi}{2}\\[6pt] \operatorname{arsinh} x &= \sum^{\infty}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} &&=x - \frac{x^3}{6} + \frac{3x^5}{40} - \cdots && \text{for }|x| \le 1\\[6pt] \operatorname{artanh} x &= \sum^{\infty}_{n=0} \frac{x^{2n+1}}{2n+1} &&=x + \frac{x^3}{3} + \frac{x^5}{5} +\cdots && \text{for }|x| \le 1,\ x\neq\pm 1 \end{align}</math> The numbers {{math|''B<sub>k</sub>''}} appearing in the series for {{math|tanh ''x''}} are the [[Bernoulli numbers]].{{sfn|Abramowitz|Stegun|1970|p=[https://books.google.com/books?id=MtU8uP7XMvoC&pg=PA85 85]}} === Polylogarithmic functions === The [[polylogarithm]]s have these defining identities: <math display="block">\begin{align} \text{Li}_{2}(x) &= \sum_{n = 1}^{\infty} \frac{1}{n^2} x^{n} \\\text{Li}_{3}(x) &= \sum_{n = 1}^{\infty} \frac{1}{n^3} x^{n} \end{align}</math> The [[Legendre chi function]]s are defined as follows: <math display="block">\begin{align} \chi_{2}(x) &= \sum_{n = 0}^{\infty} \frac{1}{(2n + 1)^2} x^{2n + 1} \\ \chi_{3}(x) &= \sum_{n = 0}^{\infty} \frac{1}{(2n + 1)^3} x^{2n + 1} \end{align}</math> And the formulas presented below are called ''[[inverse tangent integral]]s'': <math display="block">\begin{align} \text{Ti}_{2}(x) &= \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{(2n + 1)^2} x^{2n + 1} \\ \text{Ti}_{3}(x) &= \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{(2n + 1)^3} x^{2n + 1} \end{align}</math> In [[Statistical mechanics|statistical thermodynamics]] these formulas are of great importance. === Elliptic functions === The complete [[elliptic integral]]s of first kind K and of second kind E can be defined as follows: <math display="block">\begin{align} \frac{2}{\pi}K(x) &= \sum_{n = 0}^{\infty} \frac{[(2n)!]^2}{16^{n}(n!)^4}x^{2n} \\ \frac{2}{\pi}E(x) &= \sum_{n = 0}^{\infty} \frac{[(2n)!]^2}{(1 - 2n)16^{n}(n!)^4}x^{2n} \end{align}</math> The [[Theta function|Jacobi theta functions]] describe the world of the elliptic modular functions and they have these Taylor series: <math display="block">\begin{align} \vartheta_{00}(x) &= 1 + 2\sum_{n = 1}^{\infty} x^{n^2} \\ \vartheta_{01}(x) &= 1 + 2\sum_{n = 1}^{\infty} (-1)^{n} x^{n^2} \end{align}</math> The regular [[Partition function (number theory)|partition number sequence]] P(n) has this generating function: <math display="block">\vartheta_{00}(x)^{-1/6}\vartheta_{01}(x)^{-2/3}\biggl[\frac{\vartheta_{00}(x)^4 - \vartheta_{01}(x)^4}{16\,x}\biggr]^{-1/24} = \sum_{n=0}^{\infty} P(n)x^n = \prod_{k = 1}^{\infty} \frac{1}{1 - x^{k}}</math> The strict partition number sequence Q(n) has that generating function: <math display="block">\vartheta_{00}(x)^{1/6}\vartheta_{01}(x)^{-1/3}\biggl[\frac{\vartheta_{00}(x)^4 - \vartheta_{01}(x)^4}{16\,x}\biggr]^{1/24} = \sum_{n=0}^{\infty} Q(n)x^n = \prod_{k = 1}^{\infty} \frac{1}{1 - x^{2k - 1}}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Taylor series
(section)
Add topic