Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Symmetric group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cycles === A [[cyclic permutation|cycle]] of ''length'' ''k'' is a permutation ''f'' for which there exists an element ''x'' in {1, ..., ''n''} such that ''x'', ''f''(''x''), ''f''<sup>2</sup>(''x''), ..., ''f''<sup>''k''</sup>(''x'') = ''x'' are the only elements moved by ''f''; it conventionally is required that {{nowrap|''k'' β₯ 2}} since with {{nowrap|1=''k'' = 1}} the element ''x'' itself would not be moved either. The permutation ''h'' defined by : <math>h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 3 & 5\end{pmatrix}</math> is a cycle of length three, since {{nowrap|1=''h''(1) = 4}}, {{nowrap|1=''h''(4) = 3}} and {{nowrap|1=''h''(3) = 1}}, leaving 2 and 5 untouched. We denote such a cycle by {{nowrap|(1 4 3)}}, but it could equally well be written {{nowrap|(4 3 1)}} or {{nowrap|(3 1 4)}} by starting at a different point. The order of a cycle is equal to its length. Cycles of length two are transpositions. Two cycles are ''disjoint'' if they have disjoint subsets of elements. Disjoint cycles [[Commutative property|commute]]: for example, in S<sub>6</sub> there is the equality {{nowrap|1=(4 1 3)(2 5 6) = (2 5 6)(4 1 3)}}. Every element of S<sub>''n''</sub> can be written as a product of disjoint cycles; this representation is unique [[up to]] the order of the factors, and the freedom present in representing each individual cycle by choosing its starting point. Cycles admit the following conjugation property with any permutation <math>\sigma</math>, this property is often used to obtain its [[Symmetric group#Generators and relations|generators and relations]]. :<math>\sigma\begin{pmatrix} a & b & c & \ldots \end{pmatrix}\sigma^{-1}=\begin{pmatrix}\sigma(a) & \sigma(b) & \sigma(c) & \ldots\end{pmatrix}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Symmetric group
(section)
Add topic