Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Stirling number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Inversion relations and the Stirling transform== For any pair of sequences, <math>\{f_n\}</math> and <math>\{g_n\}</math>, related by a finite sum Stirling number formula given by :<math>g_n = \sum_{k=0}^{n} \left\{\begin{matrix} n \\ k \end{matrix} \right\} f_k, </math> for all integers <math>n \geq 0</math>, we have a corresponding [[generating function transformation#Inversion relations and generating function identities|inversion formula]] for <math>f_n</math> given by :<math>f_n = \sum_{k=0}^{n} \left[\begin{matrix} n \\ k \end{matrix} \right] (-1)^{n-k} g_k. </math> The lower indices could be any integer between <math display="inline">0</math> and <math display="inline">n</math>. These inversion relations between the two sequences translate into functional equations between the sequence [[generating function|exponential generating functions]] given by the [[Stirling transform|Stirling (generating function) transform]] as :<math>\widehat{G}(z) = \widehat{F}\left(e^z-1\right)</math> and :<math>\widehat{F}(z) = \widehat{G}\left(\log(1+z)\right). </math> For <math>D = d/dx</math>, the [[differential operators]] <math>x^nD^n</math> and <math>(xD)^n</math> are related by the following formulas for all integers <math>n \geq 0</math>:<ref>''Concrete Mathematics'' exercise 13 of section 6. Note that this formula immediately implies the first positive-order Stirling number transformation given in the main article on [[generating function transformation#Derivative transformations|generating function transformations]].</ref> :<math> \begin{align} (xD)^n &= \sum_{k=0}^n S(n, k) x^k D^k \\ x^n D^n &= \sum_{k=0}^n s(n, k) (xD)^k = (xD)_n = xD(xD - 1)\ldots (xD - n + 1) \end{align} </math> Another pair of "''inversion''" relations involving the [[Stirling numbers]] relate the [[finite difference|forward differences]] and the ordinary <math>n^{th}</math> [[derivative]]s of a function, <math>f(x)</math>, which is analytic for all <math>x</math> by the formulas<ref>{{cite journal|last1=Olver|first1=Frank|first2=Daniel|last2=Lozier|first3=Ronald|last3=Boisvert|first4=Charles|last4=Clark|title=NIST Handbook of Mathematical Functions|journal=NIST Handbook of Mathematical Functions|date=2010|url=https://www.nist.gov/publications/nist-handbook-mathematical-functions}} (Section 26.8)</ref> :<math>\frac{1}{k!} \frac{d^k}{dx^k} f(x) = \sum_{n=k}^{\infty} \frac{s(n, k)}{n!} \Delta^n f(x)</math> :<math>\frac{1}{k!} \Delta^k f(x) = \sum_{n=k}^{\infty} \frac{S(n, k)}{n!} \frac{d^n}{dx^n} f(x). </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Stirling number
(section)
Add topic