Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Square matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Definite matrix=== {| class="wikitable" style="float:right; text-align:center; margin:0ex 0ex 2ex 2ex;" |- ! [[Positive definite matrix|Positive definite]] !! [[Indefinite matrix|Indefinite]] |- | <math> \begin{bmatrix} 1/4 & 0 \\ 0 & 1 \\ \end{bmatrix} </math> | <math> \begin{bmatrix} 1/4 & 0 \\ 0 & -1/4 \end{bmatrix} </math> |- | {{math|1=''Q''(''x'',''y'') = 1/4 ''x''<sup>2</sup> + ''y''<sup>2</sup>}} | {{math|1=''Q''(''x'',''y'') = 1/4 ''x''<sup>2</sup> β 1/4 ''y''<sup>2</sup>}} |- | [[File:Ellipse in coordinate system with semi-axes labelled.svg|150px]] <br>Points such that {{math|1=''Q''(''x'', ''y'') = 1}} <br> ([[Ellipse]]). | [[File:Hyperbola2 SVG.svg|100x100px]] <br> Points such that {{math|1=''Q''(''x'', ''y'') = 1}} <br> ([[Hyperbola]]). |} A symmetric {{math|''n''Γ''n''}}-matrix is called ''[[positive-definite matrix|positive-definite]]'' (respectively negative-definite; indefinite), if for all nonzero vectors <math>x \in \mathbb{R}^n</math> the associated [[quadratic form]] given by <math display="block" id="quadratic_forms">Q(\mathbf{x}) = \mathbf{x}^\mathsf{T} A \mathbf{x}</math> takes only positive values (respectively only negative values; both some negative and some positive values).<ref>{{Harvard citations |last1=Horn |last2=Johnson |year=1985 |nb=yes |loc=Chapter 7 }}</ref> If the quadratic form takes only non-negative (respectively only non-positive) values, the symmetric matrix is called positive-semidefinite (respectively negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and only if all its eigenvalues are positive.<ref>{{Harvard citations |last1=Horn |last2=Johnson |year=1985 |nb=yes |loc=Theorem 7.2.1 }}</ref> The table at the right shows two possibilities for 2Γ2 matrices. Allowing as input two different vectors instead yields the [[bilinear form]] associated to {{mvar|A}}:<ref>{{Harvard citations |last1=Horn |last2=Johnson |year=1985 |nb=yes |loc=Example 4.0.6, p. 169 }}</ref> <math display="block">B_A(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\mathsf{T} A \mathbf{y}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Square matrix
(section)
Add topic