Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Spintronics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Storage media === [[Antiferromagnetism|Antiferromagnetic]] storage media have been studied as an alternative to [[ferromagnetism]],<ref>{{cite web |author=Jungwirth, T. |type=announcement of a physics colloquium at a Bavarian university |date=28 April 2014 |title=Relativistic Approaches to Spintronics with Antiferromagnets |url=http://www.physik.uni-regensburg.de/aktuell/KollSS14/Kolloquium-Jungwirth.pdf |access-date=29 April 2014 |archive-date=29 April 2014 |archive-url=https://web.archive.org/web/20140429190040/http://www.physik.uni-regensburg.de/aktuell/KollSS14/Kolloquium-Jungwirth.pdf |url-status=dead }}</ref> especially since with antiferromagnetic material the bits can be stored as well as with ferromagnetic material. Instead of the usual definition 0 ↔ 'magnetisation upwards', 1 ↔ 'magnetisation downwards', the states can be, e.g., 0 ↔ 'vertically alternating spin configuration' and 1 ↔ 'horizontally-alternating spin configuration'.<ref>This corresponds mathematically to the transition from the rotation group SO(3) to its relativistic covering, the "double group" SU(2)</ref>). The main advantages of antiferromagnetic material are: * insensitivity to data-damaging perturbations by stray fields due to zero net external magnetization;<ref name=netzero>{{cite journal |last1=Jungwirth |first1=T. |last2=Marti |first2=X. |last3=Wadley |first3=P. |last4=Wunderlich |first4=J. |title=Antiferromagnetic spintronics |journal=Nature Nanotechnology |publisher=Springer Nature |volume=11 |issue=3 |year=2016 |issn=1748-3387 |doi=10.1038/nnano.2016.18 |pmid=26936817 |pages=231–241 |arxiv=1509.05296|bibcode=2016NatNa..11..231J |s2cid=5058124 }}</ref> * no effect on near particles, implying that antiferromagnetic device elements would not magnetically disturb its neighboring elements;<ref name=netzero/> * far shorter switching times (antiferromagnetic resonance frequency is in the THz range compared to GHz ferromagnetic resonance frequency);<ref name =adv>{{cite journal |last1=Gomonay |first1=O. |last2=Jungwirth |first2=T. |last3=Sinova |first3=J. |title=Concepts of antiferromagnetic spintronics |journal=Physica Status Solidi RRL |publisher=Wiley |volume=11 |issue=4 |date=21 February 2017 |issn=1862-6254 |doi=10.1002/pssr.201700022 |page=1700022 |arxiv=1701.06556|bibcode=2017PSSRR..1100022G |s2cid=73575617 }}</ref> * broad range of commonly available antiferromagnetic materials including insulators, semiconductors, semimetals, metals, and superconductors.<ref name=adv/> Research is being done into how to read and write information to antiferromagnetic spintronics as their net zero magnetization makes this difficult compared to conventional ferromagnetic spintronics. In modern MRAM, detection and manipulation of ferromagnetic order by magnetic fields has largely been abandoned in favor of more efficient and scalable reading and writing by electrical current. Methods of reading and writing information by current rather than fields are also being investigated in antiferromagnets as fields are ineffective anyway. Writing methods currently being investigated in antiferromagnets are through [[spin-transfer torque]] and [[Spin–orbit interaction|spin-orbit torque]] from the [[spin Hall effect]] and the [[Rashba effect]]. Reading information in antiferromagnets via magnetoresistance effects such as [[tunnel magnetoresistance]] is also being explored.<ref>{{cite journal |last1=Chappert |first1=Claude |last2=Fert |first2=Albert |last3=van Dau |first3=Frédéric Nguyen |title=The emergence of spin electronics in data storage |journal=Nature Materials |publisher=Springer Science and Business Media LLC |volume=6 |issue=11 |year=2007 |issn=1476-1122 |doi=10.1038/nmat2024 |pmid=17972936 |pages=813–823 |bibcode=2007NatMa...6..813C|s2cid=21075877 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Spintronics
(section)
Add topic