Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Singular value decomposition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example == Consider the {{tmath|4 \times 5}} matrix <math display=block> \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix} </math> A singular value decomposition of this matrix is given by {{tmath|\mathbf U\mathbf \Sigma \mathbf V^*}} <math display=block>\begin{align} \mathbf{U} &= \begin{bmatrix} \color{Green}0 & \color{Blue}-1 & \color{Cyan}0 & \color{Emerald}0 \\ \color{Green}-1 & \color{Blue}0 & \color{Cyan}0 & \color{Emerald}0 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}0 & \color{Emerald}-1 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}-1 & \color{Emerald}0 \end{bmatrix} \\[6pt] \mathbf \Sigma &= \begin{bmatrix} 3 & 0 & 0 & 0 & \color{Gray}\mathit{0} \\ 0 & \sqrt{5} & 0 & 0 & \color{Gray}\mathit{0} \\ 0 & 0 & 2 & 0 & \color{Gray}\mathit{0} \\ 0 & 0 & 0 & \color{Red}\mathbf{0} & \color{Gray}\mathit{0} \end{bmatrix} \\[6pt] \mathbf{V}^* &= \begin{bmatrix} \color{Violet}0 & \color{Violet}0 & \color{Violet}-1 & \color{Violet}0 &\color{Violet}0 \\ \color{Plum}-\sqrt{0.2}& \color{Plum}0 & \color{Plum}0 & \color{Plum}0 &\color{Plum}-\sqrt{0.8} \\ \color{Magenta}0 & \color{Magenta}-1 & \color{Magenta}0 & \color{Magenta}0 &\color{Magenta}0 \\ \color{Orchid}0 & \color{Orchid}0 & \color{Orchid}0 & \color{Orchid}1 &\color{Orchid}0 \\ \color{Purple} - \sqrt{0.8} & \color{Purple}0 & \color{Purple}0 & \color{Purple}0 & \color{Purple}\sqrt{0.2} \end{bmatrix} \end{align}</math> The scaling matrix {{tmath|\mathbf \Sigma}} is zero outside of the diagonal (grey italics) and one diagonal element is zero (red bold, light blue bold in dark mode). Furthermore, because the matrices {{tmath|\mathbf U}} and {{tmath|\mathbf V^*}} are [[unitary matrix|unitary]], multiplying by their respective conjugate transposes yields [[identity matrix|identity matrices]], as shown below. In this case, because {{tmath|\mathbf U}} and {{tmath|\mathbf V^*}} are real valued, each is an [[orthogonal matrix]]. <math display=block>\begin{align} \mathbf{U} \mathbf{U}^* &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_4 \\[6pt] \mathbf{V} \mathbf{V}^* &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_5 \end{align}</math> This particular singular value decomposition is not unique. For instance, we can keep {{tmath|\mathbf U}} and {{tmath|\mathbf \Sigma}} the same, but change the last two rows of {{tmath|\mathbf V^*}} such that <math display=block>\mathbf{V}^* = \begin{bmatrix} \color{Violet}0 & \color{Violet}0 & \color{Violet}-1 & \color{Violet}0 &\color{Violet}0 \\ \color{Plum}-\sqrt{0.2}& \color{Plum}0 & \color{Plum}0 & \color{Plum}0 &\color{Plum}-\sqrt{0.8} \\ \color{Magenta}0 & \color{Magenta}-1 & \color{Magenta}0 & \color{Magenta}0 &\color{Magenta}0 \\ \color{Orchid}\sqrt{0.4} & \color{Orchid}0 & \color{Orchid}0 & \color{Orchid}\sqrt{0.5} & \color{Orchid}-\sqrt{0.1} \\ \color{Purple}-\sqrt{0.4} & \color{Purple}0 & \color{Purple}0 & \color{Purple}\sqrt{0.5} & \color{Purple}\sqrt{0.1} \end{bmatrix}</math> and get an equally valid singular value decomposition. As the matrix {{tmath|\mathbf M}} has rank 3, it has only 3 nonzero singular values. In taking the product {{tmath|\mathbf{U}\mathbf{\Sigma} \mathbf{V}^* }}, the final column of {{tmath|\mathbf U}} and the final two rows of {{tmath|\mathbf{V^*} }} are multiplied by zero, so have no effect on the matrix product, and can be replaced by any unit vectors which are orthogonal to the first three and to each-other. The [[#Compact SVD|compact SVD]], {{tmath|1= \mathbf M = \mathbf{U}_r\mathbf{\Sigma}_r \mathbf{V}_r^* }}, eliminates these superfluous rows, columns, and singular values: <math display=block>\begin{align} \mathbf{U}_r &= \begin{bmatrix} \color{Green}0 & \color{Blue}-1 & \color{Cyan}0 \\ \color{Green}-1 & \color{Blue}0 & \color{Cyan}0 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}0 \\ \color{Green}0 & \color{Blue}0 & \color{Cyan}-1 \end{bmatrix} \\[6pt] \mathbf \Sigma_r &= \begin{bmatrix} 3 & 0 & 0 \\ 0 & \sqrt{5} & 0 \\ 0 & 0 & 2 \end{bmatrix} \\[6pt] \mathbf{V}^*_r &= \begin{bmatrix} \color{Violet}0 & \color{Violet}0 & \color{Violet}-1 & \color{Violet}0 &\color{Violet}0 \\ \color{Plum}-\sqrt{0.2}& \color{Plum}0 & \color{Plum}0 & \color{Plum}0 &\color{Plum}-\sqrt{0.8} \\ \color{Magenta}0 & \color{Magenta}-1 & \color{Magenta}0 & \color{Magenta}0 &\color{Magenta}0 \end{bmatrix} \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Singular value decomposition
(section)
Add topic