Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riemann zeta function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The Hardy–Littlewood conjectures === In 1914, [[G. H. Hardy]] proved that {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} has infinitely many real zeros.<ref>{{cite journal|first1 = G.H. |last1 = Hardy |title = Sur les zeros de la fonction ζ(s) |journal = Comptes rendus de l'Académie des Sciences | volume = 158 |publisher = [[French Academy of Sciences]]|year = 1914 |pages = 1012–1014}}</ref><ref>{{Cite journal|last1=Hardy|first1=G. H.|last2=Fekete|first2=M.|last3=Littlewood|first3=J. E.|date=1921-09-01|title=The Zeros of Riemann's Zeta-Function on the Critical Line|journal=Journal of the London Mathematical Society|pages=15–19|url=https://zenodo.org/record/1447415| volume=s1-1| doi=10.1112/jlms/s1-1.1.15}}</ref> Hardy and [[John Edensor Littlewood|J. E. Littlewood]] formulated two conjectures on the density and distance between the zeros of {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} on intervals of large positive real numbers. In the following, {{math|''N''(''T'')}} is the total number of real zeros and {{math|''N''<sub>0</sub>(''T'')}} the total number of zeros of odd order of the function {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} lying in the interval {{math|(0, ''T'']}}. {{numbered list |For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} such that when :<math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac14+\varepsilon},</math> the interval {{math|(''T'', ''T'' + ''H'']}} contains a zero of odd order. |For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} and {{math|''c<sub>ε</sub>'' > 0}} such that the inequality :<math>N_0(T+H)-N_0(T) \geq c_\varepsilon H</math> holds when :<math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac12+\varepsilon}.</math> }} These two conjectures opened up new directions in the investigation of the Riemann zeta function.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riemann zeta function
(section)
Add topic