Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riemann integral
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Similar concepts == It is popular to define the Riemann integral as the [[Darboux integral]]. This is because the Darboux integral is technically simpler and because a function is Riemann-integrable if and only if it is Darboux-integrable. Some calculus books do not use general tagged partitions, but limit themselves to specific types of tagged partitions. If the type of partition is limited too much, some non-integrable functions may appear to be integrable. One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, {{math|''t<sub>i</sub>'' {{=}} ''x<sub>i</sub>''}} for all {{mvar|i}}, and in a right-hand Riemann sum, {{math|''t<sub>i</sub>'' {{=}} ''x''<sub>''i'' + 1</sub>}} for all {{mvar|i}}. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each {{mvar|t<sub>i</sub>}}. In more formal language, the set of all left-hand Riemann sums and the set of all right-hand Riemann sums is [[cofinal (mathematics)|cofinal]] in the set of all tagged partitions. Another popular restriction is the use of regular subdivisions of an interval. For example, the {{mvar|n}}th regular subdivision of {{math|[0, 1]}} consists of the intervals <math display="block">\left [0, \frac{1}{n} \right], \left [\frac{1}{n}, \frac{2}{n} \right], \ldots, \left[\frac{n-1}{n}, 1 \right].</math> Again, alone this restriction does not impose a problem, but the reasoning required to see this fact is more difficult than in the case of left-hand and right-hand Riemann sums. However, combining these restrictions, so that one uses only left-hand or right-hand Riemann sums on regularly divided intervals, is dangerous. If a function is known in advance to be Riemann integrable, then this technique will give the correct value of the integral. But under these conditions the [[indicator function]] <math>I_{\Q}</math> will appear to be integrable on {{math|[0, 1]}} with integral equal to one: Every endpoint of every subinterval will be a rational number, so the function will always be evaluated at rational numbers, and hence it will appear to always equal one. The problem with this definition becomes apparent when we try to split the integral into two pieces. The following equation ought to hold: <math display="block">\int_0^{\sqrt{2}-1} I_\Q(x) \,dx + \int_{\sqrt{2}-1}^1 I_\Q(x) \,dx = \int_0^1 I_\Q(x) \,dx.</math> If we use regular subdivisions and left-hand or right-hand Riemann sums, then the two terms on the left are equal to zero, since every endpoint except 0 and 1 will be irrational, but as we have seen the term on the right will equal 1. As defined above, the Riemann integral avoids this problem by refusing to integrate <math>I_{\Q}.</math> The Lebesgue integral is defined in such a way that all these integrals are 0.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riemann integral
(section)
Add topic