Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Real analysis
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Uniform and pointwise convergence for sequences of functions ==== {{Main|Uniform convergence}} In addition to sequences of numbers, one may also speak of ''sequences of functions'' ''on'' <math>E\subset \mathbb{R}</math>, that is, infinite, ordered families of functions <math>f_n:E\to\mathbb{R}</math>, denoted <math>(f_n)_{n=1}^\infty</math>, and their convergence properties. However, in the case of sequences of functions, there are two kinds of convergence, known as ''pointwise convergence'' and ''uniform convergence'', that need to be distinguished. Roughly speaking, pointwise convergence of functions <math>f_n</math> to a limiting function <math>f:E\to\mathbb{R}</math>, denoted <math>f_n \rightarrow f</math>, simply means that given any <math>x\in E</math>, <math>f_n(x)\to f(x)</math> as <math>n\to\infty</math>. In contrast, uniform convergence is a stronger type of convergence, in the sense that a uniformly convergent sequence of functions also converges pointwise, but not conversely. [[Uniform convergence]] requires members of the family of functions, <math>f_n</math>, to fall within some error <math>\varepsilon > 0</math> of <math>f</math> for ''every value of <math>x\in E</math>'', whenever <math>n\geq N</math>, for some integer <math>N</math>. For a family of functions to uniformly converge, sometimes denoted <math>f_n\rightrightarrows f</math>, such a value of <math>N</math> must exist for any <math>\varepsilon>0</math> given, no matter how small. Intuitively, we can visualize this situation by imagining that, for a large enough <math>N</math>, the functions <math>f_N, f_{N+1}, f_{N+2},\ldots</math> are all confined within a 'tube' of width <math>2\varepsilon</math> about <math>f</math> (that is, between <math>f - \varepsilon</math> and <math>f+\varepsilon</math>) ''for every value in their domain'' <math>E</math>. The distinction between pointwise and uniform convergence is important when exchanging the order of two limiting operations (e.g., taking a limit, a derivative, or integral) is desired: in order for the exchange to be well-behaved, many theorems of real analysis call for uniform convergence. For example, a sequence of continuous functions (see [[Real analysis#Continuity|below]]) is guaranteed to converge to a continuous limiting function if the convergence is uniform, while the limiting function may not be continuous if convergence is only pointwise. [[Karl Weierstrass]] is generally credited for clearly defining the concept of uniform convergence and fully investigating its implications.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Real analysis
(section)
Add topic