Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quadratic formula
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===By using algebraic identities=== The following method was used by many historical mathematicians:<ref>{{citation |doi = 10.1080/00207390802642237|title = The legacy of Leonhard Euler β a tricentennial tribute | year = 2009|last1 = Debnath|first1 = Lokenath|journal = International Journal of Mathematical Education in Science and Technology|volume = 40|issue = 3|pages = 353β388 | s2cid = 123048345}}</ref> Let the roots of the quadratic equation {{tmath|1=\textstyle ax^2 + bx + c = 0}} be {{tmath|\alpha}} and {{tmath|\beta}}. The derivation starts from an identity for the square of a difference (valid for any two complex numbers), of which we can take the square root on both sides: <math display=block>\begin{align} (\alpha - \beta)^2 &= (\alpha + \beta)^2 - 4 \alpha\beta \\[3mu] \alpha - \beta &= \pm\sqrt{(\alpha + \beta)^2 - 4 \alpha\beta} . \end{align}</math> Since the coefficient {{tmath|a \neq 0}}, we can divide the quadratic equation by {{tmath|a}} to obtain a [[monic polynomial|monic]] polynomial with the same roots. Namely, <math display=block> x^2 + \frac{b}{a}x + \frac{c}{a} = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta . </math> This implies that the sum {{tmath|1= \alpha + \beta = -\tfrac ba}} and the product {{tmath|1= \alpha\beta = \tfrac ca}}. Thus the identity can be rewritten: <math display=block> \alpha - \beta = \pm\sqrt{\left(-\frac{b}{a}\right)^2-4\frac{c}{a}} = \pm\frac{\sqrt{b^2 - 4ac}}{a} . </math> Therefore, <math display=block>\begin{align} \alpha &= \tfrac12(\alpha + \beta) + \tfrac12(\alpha - \beta) = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}, \\[10mu] \beta &= \tfrac12(\alpha + \beta) - \tfrac12(\alpha - \beta) = -\frac{b}{2a} \mp \frac{\sqrt{b^2 - 4ac}}{2a}. \end{align}</math> The two possibilities for each of {{tmath|\alpha}} and {{tmath|\beta}} are the same two roots in opposite order, so we can combine them into the standard quadratic equation: <math display=block> x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quadratic formula
(section)
Add topic