Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Power (physics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Peak power and duty cycle== [[File:peak-power-average-power-tau-T.png|thumb|right|In a train of identical pulses, the instantaneous power is a periodic function of time. The ratio of the pulse duration to the period is equal to the ratio of the average power to the peak power. It is also called the duty cycle (see text for definitions).]] In the case of a periodic signal <math>s(t)</math> of period <math>T</math>, like a train of identical pulses, the instantaneous power <math display="inline">p(t) = |s(t)|^2</math> is also a periodic function of period <math>T</math>. The ''peak power'' is simply defined by: <math display="block">P_0 = \max [p(t)].</math> The peak power is not always readily measurable, however, and the measurement of the average power <math>P_\mathrm{avg}</math> is more commonly performed by an instrument. If one defines the energy per pulse as <math display="block">\varepsilon_\mathrm{pulse} = \int_0^T p(t) \, dt </math> then the average power is <math display="block">P_\mathrm{avg} = \frac{1}{T} \int_0^T p(t) \, dt = \frac{\varepsilon_\mathrm{pulse}}{T}. </math> One may define the pulse length <math>\tau</math> such that <math>P_0\tau = \varepsilon_\mathrm{pulse}</math> so that the ratios <math display="block">\frac{P_\mathrm{avg}}{P_0} = \frac{\tau}{T} </math> are equal. These ratios are called the ''duty cycle'' of the pulse train.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Power (physics)
(section)
Add topic