Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Planar graph
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Coin graphs === {{main|Circle packing theorem}} [[File:Circle packing theorem K5 minus edge example.svg|thumb|Example of the circle packing theorem on {{math|''K''{{sup| β}}{{sub|5}}}}, the complete graph on five vertices, minus one edge.]] We say that two circles drawn in a plane ''kiss'' (or ''[[Osculating circle|osculate]]'') whenever they intersect in exactly one point. A "coin graph" is a graph formed by a set of circles, no two of which have overlapping interiors, by making a vertex for each circle and an edge for each pair of circles that kiss. The [[circle packing theorem]], first proved by [[Paul Koebe]] in 1936, states that a graph is planar if and only if it is a coin graph. This result provides an easy proof of [[FΓ‘ry's theorem]], that every simple planar graph can be embedded in the plane in such a way that its edges are straight [[line segment]]s that do not cross each other. If one places each vertex of the graph at the center of the corresponding circle in a coin graph representation, then the line segments between centers of kissing circles do not cross any of the other edges.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Planar graph
(section)
Add topic