Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Photon
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Nomenclature == [[File:Photoelectric_effect_in_a_solid_-_diagram.svg|alt=|thumb|[[Photoelectric effect]]: the emission of electrons from a metal plate caused by light quanta – photons]] The word [[Quantum|''quanta'']] (singular ''quantum,'' Latin for ''[[wikt:quantum|how much]]'') was used before 1900 to mean particles or amounts of different [[Quantity|quantities]], including [[electron|electricity]]. In 1900, the German physicist [[Max Planck]] was studying [[black-body radiation]], and he suggested that the experimental observations, specifically at [[ultraviolet catastrophe|shorter wavelengths]], would be explained if the energy was "made up of a completely determinate number of finite equal parts", which he called "energy elements".<ref>{{cite journal|last=Kragh |first=Helge |author-link=Helge Kragh |title=Max Planck: the reluctant revolutionary |journal=[[Physics World]] |date=2000-12-01 |volume=13 |number=12 |pages=31–36 |doi=10.1088/2058-7058/13/12/34}}</ref> In 1905, [[Albert Einstein]] published a paper in which he proposed that many light-related phenomena—including black-body radiation and the [[photoelectric effect]]—would be better explained by modelling electromagnetic waves as consisting of spatially localized, discrete energy quanta.<ref name="Einstein1905">{{Cite journal |last=Einstein |first=Albert |author-link=Albert Einstein |year=1905 |title=Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt |url=http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_132-148.pdf |url-status=live |journal=[[Annalen der Physik]] |language=de |volume=17 |issue=6 |pages=132–148 |bibcode=1905AnP...322..132E |doi=10.1002/andp.19053220607 |archive-url=https://web.archive.org/web/20150924072915/http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_132-148.pdf |archive-date=2015-09-24 |access-date=2010-08-25 |quote=According to this picture, the energy of a light wave emitted from a point source is not spread continuously over ever larger volumes, but consists of a finite number of energy quanta that are spatially localized at points of space, move without dividing and are absorbed or generated only as a whole. |doi-access=free}} An [[wikisource:Translation:On a Heuristic Point of View about the Creation and Conversion of Light|English translation]] is available from [[Wikisource]].</ref> He called these ''a light quantum'' (German: ''ein Lichtquant'').<ref>{{cite book |first=Max |last=Planck |title=The Origin and Development of the Quantum Theory |year=1922 |publisher=Clarendon Press |section=via Google Books |section-url={{google books |plainurl=y |id=4UC4AAAAIAAJ}} |url=https://archive.org/details/origindevelopmen00planrich |via=Internet Archive (archive.org, 2007-03-01)}}</ref> The name ''photon'' derives from the [[Greek language|Greek word]] for light, ''{{lang|grc|φῶς}}'' (transliterated ''phôs''). The name was used 1916 by the American physicist and psychologist [[Leonard T. Troland]] for a unit of illumination of the [[retina]] and in several other contexts before being adopted for physics.<ref name="kragh"/> The use of the term ''photon'' for the light quantum was popularized by [[Gilbert N. Lewis]], who used the term in a letter to ''[[Nature (journal)|Nature]]'' on 18 December 1926.<ref>{{cite journal |last=Lewis |first=Gilbert N. |author-link=Gilbert N. Lewis |date=18 December 1926 |title=The conservation of photons |journal=Nature |volume=118 |issue=2981 |pages=874–875 |bibcode=1926Natur.118..874L |doi=10.1038/118874a0 |eissn=1476-4687 |s2cid=4110026}}</ref> Arthur Compton, who had performed a key experiment demonstrating light quanta, cited Lewis in the 1927 [[Solvay conference]] proceedings for suggesting the name ''photon''. Einstein never did use the term.<ref name="kragh"/> In physics, a photon is usually denoted by the symbol [[gamma|{{math|γ}}]] (the [[Greek alphabet|Greek letter]] [[gamma]]). This symbol for the photon probably derives from [[gamma ray]]s, which were discovered in 1900 by [[Paul Ulrich Villard|Paul Villard]],<ref>{{cite journal |last=Villard |first=Paul Ulrich |author-link=Paul Ulrich Villard |year=1900 |title=Sur la réflexion et la réfraction des rayons cathodiques et des rayons déviables du radium |journal=[[Comptes Rendus des Séances de l'Académie des Sciences]] |language=fr |volume=130 |pages=1010–1012}}</ref><ref>{{cite journal |last=Villard |first=Paul Ulrich |author-link=Paul Ulrich Villard |year=1900 |title=Sur le rayonnement du radium |journal=[[Comptes Rendus des Séances de l'Académie des Sciences]] |language=fr |volume=130 |pages=1178–1179}}</ref> named by [[Ernest Rutherford]] in 1903, and shown to be a form of [[electromagnetic radiation]] in 1914 by Rutherford and [[Edward Andrade]].<ref>{{cite journal |last1=Rutherford |first1=Ernest |author-link=Ernest Rutherford |last2=Andrade |first2=Edward N.C. |author-link2=Edward Andrade |year=1914 |title=The wavelength of the soft gamma rays from Radium B |url=https://zenodo.org/record/2278669 |journal=[[Philosophical Magazine]] |volume=27 |issue=161 |pages=854–868 |doi=10.1080/14786440508635156 |access-date=2019-08-25 |archive-date=2020-03-08 |archive-url=https://web.archive.org/web/20200308183926/https://zenodo.org/record/2278669 |url-status=live }}</ref> In [[chemistry]] and [[optical engineering]], photons are usually symbolized by {{mvar|hν}}, which is the [[photon energy]], where {{mvar|h}} is the [[Planck constant]] and the [[Greek alphabet|Greek letter]] {{mvar|ν}} ([[Nu (letter)|nu]]) is the photon's [[frequency]].<ref name="Liddle2015">{{cite book |author=Liddle |first=Andrew |url=https://books.google.com/books?id=6n64CAAAQBAJ&pg=PA16 |title=An Introduction to Modern Cosmology |date=2015 |publisher=John Wiley & Sons |isbn=978-1-118-69025-3 |page=16 |language=en |access-date=2017-02-27 |archive-date=2024-05-13 |archive-url=https://web.archive.org/web/20240513012456/https://books.google.com/books?id=6n64CAAAQBAJ&pg=PA16#v=onepage&q&f=false |url-status=live }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Photon
(section)
Add topic