Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Navier–Stokes equations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Strong form==== Consider the incompressible Navier–Stokes equations for a [[Newtonian fluid]] of constant density <math display="inline">\rho</math> in a domain <math display="block"> \Omega \subset \mathbb R^d \quad (d=2, 3)</math> with boundary <math display="block"> \partial \Omega = \Gamma_D \cup \Gamma_N ,</math> being <math display="inline">\Gamma_D</math> and <math display="inline">\Gamma_N</math> portions of the boundary where respectively a [[Dirichlet boundary condition|Dirichlet]] and a [[Neumann boundary condition]] is applied (<math display="inline">\Gamma_D \cap \Gamma_N = \emptyset</math>):<ref name="Quarteroni">{{cite book |author-link1= Alfio Quarteroni |last1=Quarteroni |first1=Alfio |title=Numerical models for differential problems |publisher=Springer |isbn=978-88-470-5522-3 |edition=Second|date=2014-04-25 }}</ref> <math display="block"> \begin{cases} \rho \dfrac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla \cdot \boldsymbol{\sigma} (\mathbf{u}, p) = \mathbf{f} & \text{ in } \Omega \times (0, T) \\ \nabla \cdot \mathbf{u} = 0 & \text{ in } \Omega \times (0, T) \\ \mathbf{u} = \mathbf{g} & \text{ on } \Gamma_D \times (0, T) \\ \boldsymbol{\sigma} (\mathbf{u}, p) \hat{\mathbf{n}} = \mathbf{h} & \text{ on } \Gamma_N \times (0, T) \\ \mathbf{u}(0)= \mathbf{u}_0 & \text{ in } \Omega \times \{ 0\} \end{cases} </math> <math display="inline">\mathbf{u}</math> is the fluid velocity, <math display="inline">p</math> the fluid pressure, <math display="inline">\mathbf{f}</math> a given forcing term, <math>\hat{\mathbf{n}}</math> the outward directed unit normal vector to <math display="inline">\Gamma_N</math>, and <math display="inline">\boldsymbol{\sigma}(\mathbf{u}, p)</math> the [[viscous stress tensor]] defined as:<ref name="Quarteroni" /> <math display="block">\boldsymbol{\sigma} (\mathbf{u}, p) = -p \mathbf{I} + 2 \mu \boldsymbol{\varepsilon}(\mathbf{u}).</math> Let <math display="inline">\mu</math> be the dynamic viscosity of the fluid, <math display="inline">\mathbf{I}</math> the second-order [[Identity matrix|identity tensor]] and <math display="inline">\boldsymbol{\varepsilon}(\mathbf{u})</math> the [[strain-rate tensor]] defined as:<ref name="Quarteroni" /> <math display="block"> \boldsymbol{\varepsilon} (\mathbf{u}) = \frac{1}{2} \left(\left( \nabla \mathbf{u} \right) + \left( \nabla \mathbf{u} \right)^\mathrm{T}\right). </math> The functions <math display="inline"> \mathbf{g} </math> and <math display="inline"> \mathbf{h} </math> are given Dirichlet and Neumann boundary data, while <math display="inline"> \mathbf{u}_0 </math> is the [[initial condition]]. The first equation is the momentum balance equation, while the second represents the [[conservation of mass|mass conservation]], namely the [[continuity equation]]. Assuming constant dynamic viscosity, using the vectorial identity <math display="block"> \nabla \cdot \left( \nabla \mathbf{f} \right)^\mathrm{T} = \nabla ( \nabla \cdot \mathbf{f} )</math> and exploiting mass conservation, the divergence of the total stress tensor in the momentum equation can also be expressed as:<ref name="Quarteroni" /> <math display="block"> \begin{align} \nabla \cdot \boldsymbol{\sigma} (\mathbf{u}, p) & = \nabla \cdot \left(-p \mathbf{I} + 2 \mu \boldsymbol{\varepsilon}(\mathbf{u}) \right) \\ & = - \nabla p + 2 \mu \nabla \cdot \boldsymbol{\varepsilon}(\mathbf{u}) \\ & = - \nabla p + 2 \mu \nabla \cdot \left [ \tfrac{1}{2} \left(\left(\nabla \mathbf{u} \right) + \left(\nabla \mathbf{u} \right)^\mathrm{T}\right) \right] \\ & = -\nabla p + \mu \left(\Delta \mathbf{u} + \nabla \cdot \left(\nabla \mathbf{u} \right)^\mathrm{T} \right) \\ & = -\nabla p + \mu \bigl( \Delta \mathbf{u} + \nabla \underbrace{(\nabla \cdot \mathbf{u})}_{=0} \bigr) = -\nabla p + \mu \, \Delta \mathbf{u}. \end{align} </math> Moreover, note that the Neumann boundary conditions can be rearranged as:<ref name="Quarteroni" /> <math display="block"> \boldsymbol{\sigma}(\mathbf{u}, p) \hat{\mathbf{n}} = \left(-p \mathbf{I} + 2 \mu \boldsymbol{\varepsilon}(\mathbf{u})\right)\hat{\mathbf{n}} = -p \hat{\mathbf{n}} + \mu \frac{\partial \boldsymbol u}{\partial \hat{\mathbf{n}}}. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Navier–Stokes equations
(section)
Add topic