Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lagrange multiplier
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multiple constraints=== Let <math>\ M\ </math> and <math>\ f\ </math> be as in the above section regarding the case of a single constraint. Rather than the function <math>g</math> described there, now consider a smooth function <math>\ G:M\to \R^p (p>1)\ ,</math> with component functions <math>\ g_i: M \to \R\ ,</math> for which <math>0\in\R^p</math> is a [[regular value]]. Let <math>N</math> be the submanifold of <math>\ M\ </math> defined by <math>\ G(x)=0 ~.</math> <math>\ x\ </math> is a stationary point of <math>f|_{N}</math> if and only if <math>\ \ker( \operatorname{d}f_x )\ </math> contains <math>\ \ker( \operatorname{d}G_x ) ~.</math> For convenience let <math>\ L_x = \operatorname{d}f_x\ </math> and <math>\ K_x = \operatorname{d}G_x\ ,</math> where <math>\ \operatorname{d}G</math> denotes the tangent map or Jacobian <math>\ TM \to T\R^p ~</math> (<math>\ T_x\R^p</math> can be canonically identified with <math>\ \R^p</math>). The subspace <math>\ker(K_x)</math> has dimension smaller than that of <math>\ker(L_x)</math>, namely <math>\ \dim(\ker(L_x)) = n-1\ </math> and <math>\ \dim(\ker(K_x)) = n-p ~.</math> <math>\ker(K_x)</math> belongs to <math>\ \ker(L_x)\ </math> if and only if <math>L_x \in T^{\ast}_x M</math> belongs to the image of <math>\ K^{\ast}_x: \R^{p\ast}\to T^{\ast}_x M ~.</math> Computationally speaking, the condition is that <math>L_x</math> belongs to the row space of the matrix of <math>\ K_x\ ,</math> or equivalently the column space of the matrix of <math>K^{\ast}_x</math> (the transpose). If <math>\ \omega_x \in \Lambda^{p}(T^{\ast}_x M)\ </math> denotes the exterior product of the columns of the matrix of <math>\ K^{\ast}_x\ ,</math> the stationary condition for <math>\ f|_{N}\ </math> at <math>\ x\ </math> becomes <math display="block"> L_x \wedge \omega_x = 0 \in \Lambda^{p+1} \left (T^{\ast}_x M \right ) </math> Once again, in this formulation it is not necessary to explicitly find the Lagrange multipliers, the numbers <math>\ \lambda_1, \ldots, \lambda_p\ </math> such that <math display="block">\ \operatorname{d}f_x = \sum_{i=1}^p \lambda_i \operatorname{d}(g_i)_x ~.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lagrange multiplier
(section)
Add topic