Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kronecker delta
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definitions of the generalized Kronecker delta === In terms of the indices, the generalized Kronecker delta is defined as:<ref>{{cite book|first=Theodore|last=Frankel|title=The Geometry of Physics: An Introduction|edition=3rd|date=2012|publisher=Cambridge University Press|isbn=9781107602601}}</ref><ref>{{cite book|first=D. C.|last=Agarwal|title=Tensor Calculus and Riemannian Geometry|edition=22nd|date=2007|publisher=Krishna Prakashan Media}}{{ISBN missing}}</ref> <math display="block">\delta^{\mu_1 \dots \mu_p }_{\nu_1 \dots \nu_p} = \begin{cases} \phantom-1 & \quad \text{if } \nu_1 \dots \nu_p \text{ are distinct integers and are an even permutation of } \mu_1 \dots \mu_p \\ -1 & \quad \text{if } \nu_1 \dots \nu_p \text{ are distinct integers and are an odd permutation of } \mu_1 \dots \mu_p \\ \phantom-0 & \quad \text{in all other cases}. \end{cases}</math> Let <math>\mathrm{S}_p</math> be the [[symmetric group]] of degree <math>p</math>, then: <math display="block">\delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = \sum_{\sigma \in \mathrm{S}_p} \sgn(\sigma)\, \delta^{\mu_1}_{\nu_{\sigma(1)}}\cdots\delta^{\mu_p}_{\nu_{\sigma(p)}} = \sum_{\sigma \in \mathrm{S}_p} \sgn(\sigma)\, \delta^{\mu_{\sigma(1)}}_{\nu_1}\cdots\delta^{\mu_{\sigma(p)}}_{\nu_p}. </math> Using [[Antisymmetric tensor#Notation|anti-symmetrization]]: <math display="block">\delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = p! \delta^{\mu_1}_{[ \nu_1} \dots \delta^{\mu_p}_{\nu_p ]} = p! \delta^{[ \mu_1}_{\nu_1} \dots \delta^{\mu_p ]}_{\nu_p}.</math> In terms of a <math>p\times p</math> [[determinant]]:<ref>{{cite book |first1=David |last1=Lovelock |first2=Hanno |last2=Rund |title=Tensors, Differential Forms, and Variational Principles |publisher=Courier Dover Publications |year=1989 |isbn=0-486-65840-6 }}</ref> <math display="block">\delta^{\mu_1 \dots \mu_p }_{\nu_1 \dots \nu_p} = \begin{vmatrix} \delta^{\mu_1}_{\nu_1} & \cdots & \delta^{\mu_1}_{\nu_p} \\ \vdots & \ddots & \vdots \\ \delta^{\mu_p}_{\nu_1} & \cdots & \delta^{\mu_p}_{\nu_p} \end{vmatrix}.</math> Using the [[Laplace expansion]] ([[Determinant#Laplace's expansion and the adjugate matrix|Laplace's formula]]) of determinant, it may be defined [[Recursion|recursively]]:<ref>A recursive definition requires a first case, which may be taken as {{math|1=''δ'' = 1}} for {{math|1=''p'' = 0}}, or alternatively {{math|1=''δ''{{su|p=''μ''|b=''ν''|lh=0.9em}} = ''δ''{{su|p=''μ''|b=''ν''|lh=0.9em}}}} for {{math|1=''p'' = 1}} (generalized delta in terms of standard delta).</ref> <math display="block">\begin{align} \delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} &= \sum_{k=1}^p (-1)^{p+k} \delta^{\mu_p}_{\nu_k} \delta^{\mu_1 \dots \mu_{k} \dots \check\mu_p}_{\nu_1 \dots \check\nu_k \dots \nu_p} \\ &= \delta^{\mu_p}_{\nu_p} \delta^{\mu_1 \dots \mu_{p - 1}}_{\nu_1 \dots \nu_{p-1}} - \sum_{k=1}^{p-1} \delta^{\mu_p}_{\nu_k} \delta^{\mu_1 \dots \mu_{k-1}\, \mu_k\, \mu_{k+1} \dots \mu_{p-1}}_{\nu_1 \dots \nu_{k-1}\, \nu_p\, \nu_{k+1} \dots \nu_{p-1}}, \end{align}</math> where the caron, <math>\check{}</math>, indicates an index that is omitted from the sequence. When <math>p=n</math> (the dimension of the vector space), in terms of the [[Levi-Civita symbol]]: <math display="block">\delta^{\mu_1 \dots \mu_n}_{\nu_1 \dots \nu_n} = \varepsilon^{\mu_1 \dots \mu_n}\varepsilon_{\nu_1 \dots \nu_n}\,.</math> More generally, for <math>m=n-p</math>, using the [[Einstein summation convention]]: <math display="block">\delta^{\mu_1 \dots \mu_p}_{\nu_1 \dots \nu_p} = \tfrac{1}{m!} \varepsilon^{\kappa_1 \dots \kappa_m \mu_1 \dots \mu_p}\varepsilon_{\kappa_1 \dots \kappa_m \nu_1 \dots \nu_p}\,.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kronecker delta
(section)
Add topic