Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Island of stability
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Possible natural occurrence== {{see also|Extinct isotopes of superheavy elements}} Even though half-lives of hundreds or thousands of years would be relatively long for superheavy elements, they are far too short for any such nuclides to exist [[primordial nuclide|primordially]] on Earth. Additionally, instability of nuclei intermediate between primordial actinides ([[thorium-232|<sup>232</sup>Th]], [[uranium-235|<sup>235</sup>U]], and [[uranium-238|<sup>238</sup>U]]) and the island of stability may inhibit production of nuclei within the island in [[r-process|''r''-process]] nucleosynthesis. Various models suggest that spontaneous fission will be the dominant decay mode of nuclei with ''A'' > 280, and that neutron-induced or beta-delayed [[nuclear fission|fission]]—respectively neutron capture and beta decay immediately followed by fission—will become the primary reaction channels. As a result, beta decay towards the island of stability may only occur within a very narrow path or may be entirely blocked by fission, thus precluding the synthesis of nuclides within the island.<ref name="natural">{{cite journal |last1=Petermann |first1=I. |last2=Langanke |first2=K. |last3=Martínez-Pinedo |first3=G. |last4=Panov |first4=I. V. |last5=Reinhard |first5=P. G. |last6=Thielemann |first6=F. K. |display-authors=3 |date=2012 |title=Have superheavy elements been produced in nature? |url=https://www.researchgate.net/publication/229156774 |journal=European Physical Journal A |language=en |volume=48 |issue=122 |page=122 |arxiv=1207.3432 |bibcode=2012EPJA...48..122P |doi=10.1140/epja/i2012-12122-6 |s2cid=119264543}}</ref> The non-observation of superheavy nuclides such as <sup>292</sup>Hs and <sup>298</sup>Fl in nature is thought to be a consequence of a low yield in the ''r''-process resulting from this mechanism, as well as half-lives too short to allow measurable quantities to persist in nature.<ref name=spectrometry>{{cite journal| last1=Ludwig |first1=P. |last2=Faestermann |first2=T. |last3=Korschinek |first3=G. |last4=Rugel |first4=G. |last5=Dillmann |first5=I. |last6=Fimiani |first6=L. |last7=Bishop |first7=S. |last8=Kumar |first8=P. |display-authors=3 |title=Search for superheavy elements with 292 ≤ ''A'' ≤ 310 in nature with accelerator mass spectrometry |date=2012 |journal=Physical Review C |volume=85 |issue=2 |pages=024315-1–024315-8 <!-- Deny Citation Bot-->|doi=10.1103/PhysRevC.85.024315 |url=https://www.nucastro.ph.tum.de/fileadmin/tuphena/www/pubs/e024315.pdf |archive-url=https://web.archive.org/web/20181228223425/https://www.nucastro.ph.tum.de/fileadmin/tuphena/www/pubs/e024315.pdf |archive-date=28 December 2018 |url-status=live}}</ref>{{efn|The observation of long-lived isotopes of [[roentgenium]] (with ''A'' {{=}} 261, 265) and [[unbibium]] (''A'' {{=}} 292) in nature has been claimed by Israeli physicist [[Amnon Marinov]] et al.,<ref name="rg2009">{{cite journal |last1=Marinov |first1=A. |last2=Rodushkin |first2=I. |last3=Pape |first3=A. |last4=Kashiv |first4=Y. |last5=Kolb |first5=D. |last6=Brandt |first6=R. |last7=Gentry |first7=R. V. |last8=Miller |first8=H. W. |last9=Halicz |first9=L. |first10=I. |last10=Segal |year=2009 |display-authors=3 |title=Existence of Long-Lived Isotopes of a Superheavy Element in Natural Au |journal=[[International Journal of Modern Physics E]] |volume=18 |number=3 |pages=621–629 |publisher=[[World Scientific Publishing Company]] |doi=10.1142/S021830130901280X |url=http://www.phys.huji.ac.il/~marinov/publications/Au_paper_IJMPE_73.pdf |access-date=12 February 2012 |arxiv=nucl-ex/0702051 |bibcode=2009IJMPE..18..621M |s2cid=119103410 |archive-url=https://web.archive.org/web/20140714210340/http://www.phys.huji.ac.il/~marinov/publications/Au_paper_IJMPE_73.pdf |archive-date=14 July 2014 |url-status=dead }}</ref><ref name=arxiv122>{{cite journal |last=Marinov |first=A. |author2=Rodushkin, I.|author3= Kolb, D.|author4= Pape, A.|author5= Kashiv, Y.|author6= Brandt, R.|author7= Gentry, R. V.|author8= Miller, H. W. |display-authors=3 |title=Evidence for a long-lived superheavy nucleus with atomic mass number A = 292 and atomic number Z =~ 122 in natural Th |journal= International Journal of Modern Physics E|year=2010 |arxiv=0804.3869 |bibcode = 2010IJMPE..19..131M |doi = 10.1142/S0218301310014662 |volume=19 |issue=1 |pages=131–140 |s2cid=117956340 }}</ref> though evaluations of the technique used and subsequent unsuccessful searches cast considerable doubt on these results.<ref name=emsley/><ref name=nat-scint/>}} Various studies utilizing [[accelerator mass spectroscopy]] and [[crystal scintillator]]s have reported upper limits of the natural abundance of such long-lived superheavy nuclei on the order of {{val|e=-14}} relative to their stable [[homolog (chemistry)|homologs]].<ref name=nat-scint>{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Cappella |first3=F. |last4=Caracciolo |first4=V. |last5=Cerulli |first5=R. |last6=Danevich |first6=F. A. |last7=Incicchitti |first7=A. |last8=Kasperovych |first8=D. V.|last9=Kobychev |first9=V. V. |last10=Laubenstein |first10=M. |last11=Poda |first11=D. V. |last12=Polischuk |first12=O. G. |last13=Sokur |first13=N. V. |last14=Tretyak |first14=V. I. |display-authors=3 |title=Search for naturally occurring seaborgium with radiopure <sup>116</sup>CdWO<sub>4</sub> crystal scintillators |date=2022 |journal=Physica Scripta |volume=97 |number=85302 |page=085302 |doi=10.1088/1402-4896/ac7a6d|bibcode=2022PhyS...97h5302B |s2cid=249902412 }}</ref> Despite these obstacles to their synthesis, a 2013 study published by a group of Russian physicists led by [[Valeriy Zagrebaev]] proposes that the longest-lived copernicium isotopes may occur at an abundance of 10<sup>−12</sup> relative to lead, whereby they may be detectable in [[cosmic ray]]s.<ref name=Zagrebaev /> Similarly, in a 2013 experiment, a group of Russian physicists led by Aleksandr Bagulya reported the possible observation of three [[cosmogenic]] superheavy nuclei in [[olivine]] crystals in meteorites. The atomic number of these nuclei was estimated to be between 105 and 130, with one nucleus likely constrained between 113 and 129, and their lifetimes were estimated to be at least 3,000 years. Although this observation has yet to be confirmed in independent studies, it strongly suggests the existence of the island of stability, and is consistent with theoretical calculations of half-lives of these nuclides.<ref name=oly1>{{cite journal |last1=Bagulya |first1=A. V. |last2=Vladimirov |first2=M. S. |last3=Volkov |first3=A. E. |last4=Goncharova |first4=L. A. |last5=Gorbunov |first5=S. A. |last6=Kalinina |first6=G. V. |last7=Konovalova |first7=N. S. |last8=Okatyeva |first8=N. M. |last9=Pavolva |first9=T. A. |last10=Polukhina |first10=N. G. |last11=Starkov |first11=N. I. |last12=Soe |first12=T. N. |last13=Chernyavsky |first13=M. M. |last14=Shchedrina |first14=T. V. |display-authors=3 |title=Charge spectrum of superheavy nuclei of galactic cosmic rays obtained in the OLIMPIA experiment |journal=Bulletin of the Lebedev Physics Institute |date=2015 |volume=42 |issue=5 |pages=152–156 |doi=10.3103/S1068335615050073 |url=https://www.researchgate.net/publication/279166139|bibcode=2015BLPI...42..152B |s2cid=124044490 }}</ref><ref name=nats>{{cite arXiv |first1=A. |last1= Alexandrov |first2= V. |last2= Alexeev |first3= A. |last3= Bagulya |first4= A. |last4= Dashkina |first5= M. |last5= Chernyavsky |first6= A. |last6= Gippius |first7= L. |last7= Goncharova |first8= S. |last8= Gorbunov |first9= V. |last9= Grachev |first10= G. |last10= Kalinina |first11= N. |last11= Konovalova |first12= N. |last12= Okateva |first13= T. |last13= Pavlova |first14= N. |last14= Polukhina |first15= R. |last15= Rymzhanov |first16= N. |last16= Starkov |first17= T. N. |last17= Soe |first18= T. |last18= Shchedrina |first19= A. |last19= Volkov |display-authors=3 |title=Natural superheavy nuclei in astrophysical data |date=2019 |eprint=1908.02931 |class=nucl-ex }}</ref><ref name=19cq>{{cite journal |title=Superheavy elements: Oganesson and beyond |date=2019 |last1=Giuliani |first1=S. A. |last2=Matheson |first2=Z. |last3=Nazarewicz |first3=W. |display-authors=et al. |journal=Reviews of Modern Physics |volume=91 |issue=1 |pages=24–27 |doi=10.1103/RevModPhys.91.011001 |osti=1513815 |doi-access=free }}</ref> The decay of heavy, long-lived elements in the island of stability is a proposed explanation for the unusual presence of the short-lived [[Radionuclide|radioactive isotopes]] observed in [[Przybylski's Star]].<ref>{{Cite journal |author1=V. A. Dzuba |author2=V. V. Flambaum |author3=J. K. Webb |year=2017 |title=Isotope shift and search for metastable superheavy elements in astrophysical data |journal=Physical Review A |volume=95 |issue=6 |pages=062515 |arxiv=1703.04250 |bibcode=2017PhRvA..95f2515D |doi=10.1103/PhysRevA.95.062515 |s2cid=118956691}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Island of stability
(section)
Add topic