Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Inverse limit
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Further results=== More generally, if ''C'' is an arbitrary abelian category that has [[Injective object#Enough injectives|enough injectives]], then so does ''C''<sup>''I''</sup>, and the right [[derived functor]]s of the inverse limit functor can thus be defined. The ''n''th right derived functor is denoted :<math>R^n\varprojlim:C^I\rightarrow C.</math> In the case where ''C'' satisfies [[Grothendieck]]'s axiom [[Abelian category#Grothendieck's axioms|(AB4*)]], [[Jan-Erik Roos]] generalized the functor lim<sup>1</sup> on '''Ab'''<sup>''I''</sup> to series of functors lim<sup>n</sup> such that :<math>\varprojlim{}^n\cong R^n\varprojlim.</math> It was thought for almost 40 years that Roos had proved (in {{lang|fr|Sur les foncteurs dérivés de lim. Applications.}}) that lim<sup>1</sup> ''A''<sub>''i''</sub> = 0 for (''A''<sub>''i''</sub>, ''f''<sub>''ij''</sub>) an inverse system with surjective transition morphisms and ''I'' the set of non-negative integers (such inverse systems are often called "[[Mittag-Leffler]] sequences"). However, in 2002, [[Amnon Neeman]] and [[Pierre Deligne]] constructed an example of such a system in a category satisfying (AB4) (in addition to (AB4*)) with lim<sup>1</sup> ''A''<sub>''i''</sub> ≠ 0. Roos has since shown (in "Derived functors of inverse limits revisited") that his result is correct if ''C'' has a set of generators (in addition to satisfying (AB3) and (AB4*)). [[Barry Mitchell (mathematician)|Barry Mitchell]] has shown (in "The cohomological dimension of a directed set") that if ''I'' has [[cardinality]] <math>\aleph_d</math> (the ''d''th [[Aleph number|infinite cardinal]]), then ''R''<sup>''n''</sup>lim is zero for all ''n'' ≥ ''d'' + 2. This applies to the ''I''-indexed diagrams in the category of ''R''-modules, with ''R'' a commutative ring; it is not necessarily true in an arbitrary abelian category (see Roos' "Derived functors of inverse limits revisited" for examples of abelian categories in which lim<sup>''n''</sup>, on diagrams indexed by a countable set, is nonzero for ''n'' > 1).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Inverse limit
(section)
Add topic