Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Infimum and supremum
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties=== If <math>A</math> is any set of real numbers then <math>A \neq \varnothing</math> if and only if <math>\sup A \geq \inf A,</math> and otherwise <math>-\infty = \sup \varnothing < \inf \varnothing = \infty.</math>{{sfn|Rockafellar|Wets|2009|pp=1-2}} '''Set inclusion''' If <math>A \subseteq B</math> are sets of real numbers then <math>\inf A \geq \inf B</math> (if <math>A = \varnothing</math> this reads as <math>\inf B \le \infty</math>) and <math>\sup A \leq \sup B.</math> '''Image under functions''' If <math>f \colon \mathbb{R} \to \mathbb{R}</math> is a nonincreasing function, then <math>f (\inf(S)) \le \inf (f (S))</math> and <math>\sup(f(S))</math>, where the image is defined as <math>f(S) \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \{f(s) : s \in S\}.</math> '''Identifying infima and suprema''' If the infimum of <math>A</math> exists (that is, <math>\inf A</math> is a real number) and if <math>p</math> is any real number then <math>p = \inf A</math> if and only if <math>p</math> is a lower bound and for every <math>\epsilon > 0</math> there is an <math>a_\epsilon \in A</math> with <math>a_\epsilon < p + \epsilon.</math> Similarly, if <math>\sup A</math> is a real number and if <math>p</math> is any real number then <math>p = \sup A</math> if and only if <math>p</math> is an upper bound and if for every <math>\epsilon > 0</math> there is an <math>a_\epsilon \in A</math> with <math>a_\epsilon > p - \epsilon.</math> '''Relation to limits of sequences''' If <math>S \neq \varnothing</math> is any non-empty set of real numbers then there always exists a non-decreasing sequence <math>s_1 \leq s_2 \leq \cdots</math> in <math>S</math> such that <math>\lim_{n \to \infty} s_n = \sup S.</math> Similarly, there will exist a (possibly different) non-increasing sequence <math>s_1 \geq s_2 \geq \cdots</math> in <math>S</math> such that <math>\lim_{n \to \infty} s_n = \inf S.</math> In particular, the infimum and supremum of a set belong to its [[Closure (topology)|closure]] if <math>\inf S \in \mathbb{R}</math> then <math>\inf S \in \bar{S}</math> and if <math>\sup S \in \mathbb{R}</math> then <math>\sup S \in \bar{S}</math> Expressing the infimum and supremum as a limit of a such a sequence allows theorems from various branches of mathematics to be applied. Consider for example the well-known fact from [[topology]] that if <math>f</math> is a [[Continuous function (topology)|continuous function]] and <math>s_1, s_2, \ldots</math> is a sequence of points in its domain that converges to a point <math>p,</math> then <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> necessarily converges to <math>f(p).</math> It implies that if <math>\lim_{n \to \infty} s_n = \sup S</math> is a real number (where all <math>s_1, s_2, \ldots</math> are in <math>S</math>) and if <math>f</math> is a continuous function whose domain contains <math>S</math> and <math>\sup S,</math> then <math display=block>f(\sup S) = f\left(\lim_{n \to \infty} s_n\right) = \lim_{n \to \infty} f\left(s_n\right),</math> which (for instance) guarantees<ref group=note>Since <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> is a sequence in <math>f(S)</math> that converges to <math>f(\sup S),</math> this guarantees that <math>f(\sup S)</math> belongs to the [[Closure (topology)|closure]] of <math>f(S).</math></ref> that <math>f(\sup S)</math> is an [[adherent point]] of the set <math>f(S) \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \{f(s) : s \in S\}.</math> If in addition to what has been assumed, the continuous function <math>f</math> is also an increasing or [[non-decreasing function]], then it is even possible to conclude that <math>\sup f(S) = f(\sup S).</math> This may be applied, for instance, to conclude that whenever <math>g</math> is a real (or [[Complex number|complex]]) valued function with domain <math>\Omega \neq \varnothing</math> whose [[sup norm]] <math>\|g\|_\infty \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \sup_{x \in \Omega} |g(x)|</math> is finite, then for every non-negative real number <math>q,</math> <math display=block>\|g\|_\infty^q ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\sup_{x \in \Omega} |g(x)|\right)^q = \sup_{x \in \Omega} \left(|g(x)|^q\right)</math> since the map <math>f : [0, \infty) \to \R</math> defined by <math>f(x) = x^q</math> is a continuous non-decreasing function whose domain <math>[0, \infty)</math> always contains <math>S := \{|g(x)| : x \in \Omega\}</math> and <math>\sup S \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \|g\|_\infty.</math> Although this discussion focused on <math>\sup,</math> similar conclusions can be reached for <math>\inf</math> with appropriate changes (such as requiring that <math>f</math> be non-increasing rather than non-decreasing). Other [[Norm (mathematics)|norms]] defined in terms of <math>\sup</math> or <math>\inf</math> include the [[weak Lp space|weak <math>L^{p,w}</math> space]] norms (for <math>1 \leq p < \infty</math>), the norm on [[Lp space|Lebesgue space]] <math>L^\infty(\Omega, \mu),</math> and [[operator norm]]s. Monotone sequences in <math>S</math> that converge to <math>\sup S</math> (or to <math>\inf S</math>) can also be used to help prove many of the formula given below, since addition and multiplication of real numbers are continuous operations.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Infimum and supremum
(section)
Add topic