Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hyperbolic functions
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Characterizing properties== === Hyperbolic cosine === It can be shown that the [[area under the curve]] of the hyperbolic cosine (over a finite interval) is always equal to the [[arc length]] corresponding to that interval:<ref>{{cite book | title=Golden Integral Calculus | first1=Bali | last1=N.P. | publisher=Firewall Media | year=2005 | isbn=81-7008-169-6 | page=472 | url=https://books.google.com/books?id=hfi2bn2Ly4cC&pg=PA472}}</ref> <math display="block">\text{area} = \int_a^b \cosh x \,dx = \int_a^b \sqrt{1 + \left(\frac{d}{dx} \cosh x \right)^2} \,dx = \text{arc length.}</math> ===Hyperbolic tangent{{anchor|tanh}}=== The hyperbolic tangent is the (unique) solution to the [[differential equation]] {{math|1=''f'' β² = 1 β ''f'' <sup>2</sup>}}, with {{math|1=''f'' (0) = 0}}.<ref>{{cite book |title=Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs |first=Willi-Hans |last= Steeb |edition= 3rd|publisher=World Scientific Publishing Company |year=2005 |isbn=978-981-310-648-2 |page=281 |url=https://books.google.com/books?id=-Qo8DQAAQBAJ}} [https://books.google.com/books?id=-Qo8DQAAQBAJ&pg=PA281 Extract of page 281 (using lambda=1)]</ref><ref>{{cite book |title=An Atlas of Functions: with Equator, the Atlas Function Calculator |first1=Keith B.|last1= Oldham |first2=Jan |last2=Myland |first3=Jerome |last3=Spanier |edition=2nd, illustrated |publisher=Springer Science & Business Media |year=2010 |isbn=978-0-387-48807-3 |page=290 |url=https://books.google.com/books?id=UrSnNeJW10YC}} [https://books.google.com/books?id=UrSnNeJW10YC&pg=PA290 Extract of page 290]</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hyperbolic functions
(section)
Add topic