Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Free fall
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Inverse-square law gravitational field === It can be said that two objects in space orbiting each other in the absence of other forces are in free fall around each other, e.g. that the Moon or an artificial satellite "falls around" the Earth, or a planet "falls around" the Sun. Assuming spherical objects means that the equation of motion is governed by [[Newton's law of universal gravitation]], with solutions to the [[gravitational two-body problem]] being [[elliptic orbits]] obeying [[Kepler's laws of planetary motion]]. This connection between falling objects close to the Earth and orbiting objects is best illustrated by the thought experiment, [[Newton's cannonball]]. The motion of two objects moving radially towards each other with no [[angular momentum]] can be considered a special case of an elliptical orbit of [[Orbital eccentricity|eccentricity]] {{nowrap|''e'' {{=}} 1}} ([[radial elliptic trajectory]]). This allows one to compute the [[free-fall time]] for two point objects on a radial path. The solution of this equation of motion yields time as a function of separation: :<math>t(y)=\sqrt{\frac{{y_0}^3} {2\mu}} \left(\sqrt{\frac{y}{y_0}\left(1-\frac{y}{y_0}\right)}+\arccos{\sqrt{\frac{y}{y_0}}}\right),</math> where :<math>t</math> is the time after the start of the fall :<math>y</math> is the distance between the centers of the bodies :<math>y_0</math> is the initial value of <math>y</math> :<math>\mu = G(m_1 + m_2)</math> is the [[standard gravitational parameter]]. Substituting <math> y = 0</math> we get the [[free-fall time]] :<math>t_{\text{ff}}=\pi\sqrt{y_0^3/(8\mu)}</math> and <math>t/t_{\text{ff}}=2/\pi\left(\sqrt{y_r\left(1-y_r\right)}+\arccos{\sqrt{y_r}}\right). </math> The separation can be expressed explicitly as a function of time <ref>{{cite journal |last1=Obreschkow |first1=Danail |title=From Cavitation to Astrophysics: Explicit Solution of the Spherical Collapse Equation |journal=Phys. Rev. E |date=7 June 2024 |volume=109 |issue=6 |page=065102 |doi=10.1103/PhysRevE.109.065102 |pmid=39021019 |url=https://link.aps.org/doi/10.1103/PhysRevE.109.065102|arxiv=2401.05445 |bibcode=2024PhRvE.109f5102O }}</ref> :<math>y(t)=y_0~Q\left(1-\frac{t}{t_{\text{ff}}};\frac{3}{2},\frac{1}{2}\right) ~,</math> where <math>Q(x;\alpha,\beta)</math> is the quantile function of the [[Beta distribution]], also known as the [[inverse function]] of the [[regularized incomplete beta function]] <math>I_x(\alpha,\beta)</math>. This solution can also be represented exactly by the analytic power series :<math>y(t)=\sum_{n=1}^{\infty}{\frac{x^{n}}{n!}}\cdot \lim_{r\to0}\left(\frac{\mathrm{d}^{\,n-1}}{\mathrm{d}r^{\,n-1}}\left[r^n\left(\frac{7}{2}\bigl(\arcsin(\sqrt{r}) -\sqrt{r-r^2}\bigr)\right)^{-\frac{2}{3}n}\right]\right)</math> <math>=x/\lim_{r\to0}[(\frac{7}{2}\bigl(\arcsin(\sqrt{r})-\sqrt{r-r^2}\bigr))^{\frac{2}{3}}]' +{\frac{x^2}{2!}}\lim_{r\to0} \left(\frac{\mathrm{d}^{1}}{\mathrm{d}r^{1}} \left[ r^2\left(\frac{7}{2}\bigl(\arcsin(\sqrt{r}) -\sqrt{r-r^2}\bigr) \right)^{-\frac{4}{3}}\right]\right)</math> <math> +{\frac{x^3}{3!}}\lim_{r\to0} \left(\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}} \left[ r^3\left(\frac{7}{2}\bigl(\arcsin(\sqrt{r}) -\sqrt{r-r^2}\bigr) \right)^{-2}\right]\right)+\cdots </math><ref><math>x^1/1! \cdot\lim_{r\to0} [Num(r)/Den(r)] =x\cdot [0/(7/2\cdot(0-0))^{2/3}]</math> = <math>x\lim_{r\to0}[\operatorname{d}\!{Num}/\operatorname{d}\!r:\operatorname{d}\!{Den}/ \operatorname{d}\!r] =x\lim_{r\to0}[\operatorname{d}\!{r^1}/\operatorname{d}\!r:{Den}'] </math> </ref> Evaluating this yields:<ref>{{cite journal|doi=10.1088/0143-0807/29/5/012|title=From Moon-fall to motions under inverse square laws|journal=European Journal of Physics|volume=29|issue=5|pages=987β1003|year=2008|last1=Foong|first1=S K|bibcode=2008EJPh...29..987F|s2cid=122494969 |doi-access=free}}</ref><ref>{{cite journal|doi=10.1119/1.3246467|url=https://apps.dtic.mil/sti/pdfs/ADA534896.pdf|title=Radial Motion of Two Mutually Attracting Particles|journal=The Physics Teacher|volume=47|issue=8|pages=502β507|year=2009|last1=Mungan|first1=Carl E.|bibcode=2009PhTea..47..502M}}</ref> :<math>y(t)/y_0=x-\frac{1}{5}x^2-\frac{3}{175}x^3-\frac{23}{7875}x^4-\frac{1894}{3,031875} x^5-\frac{3293}{21,896875}x^6-\frac{2,418092}{62,077,640625}x^7-\cdots </math> <math> =x-\frac{1}{5}x[x+(\frac{3}{7}x^2+\frac{23}{315}x^3+\frac{1894}{121,275}x^4+\frac{3293}{875,875}x^5+\frac{2,418092}{2,483,105625}x^6+\cdots)/5] </math> <math>=x-\frac{1}{5}x[x+(\frac{3}{7}+(\frac{23}{63}+ \frac{1894}{24,255}x+\frac{3293}{175,175}x^2+\frac{2,418092}{480,621125}x^3)x/5+\cdots)x^2/5],</math> where <math>x=\left[\frac{3}{2}\left(\frac{\pi}{2}-t\sqrt{\frac{2\mu}{{y_0}^3}}\right)\right]^{2/3}=[3\pi/4\cdot(1-t/t_{\text{ff}})]^{2/3}.</math><ref>At t=0 <math display="inline">x=(3/4\cdot\pi)^{2/3}</math> and y=y<sub>0</sub>, at <math display="inline">t=t_{ff}</math> x=0 and y=0.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Free fall
(section)
Add topic