Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier analysis
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Summary=== For periodic functions, both the Fourier transform and the DTFT comprise only a discrete set of frequency components (Fourier series), and the transforms diverge at those frequencies. One common practice (not discussed above) is to handle that divergence via [[Dirac delta]] and [[Dirac comb]] functions. But the same spectral information can be discerned from just one cycle of the periodic function, since all the other cycles are identical. Similarly, finite-duration functions can be represented as a Fourier series, with no actual loss of information except that the periodicity of the inverse transform is a mere artifact. It is common in practice for the duration of ''s''(β’) to be limited to the period, {{mvar|P}} or {{mvar|N}}. But these formulas do not require that condition. {| class="wikitable" style="text-align:left" |+ <math>s(t)</math> transforms (continuous-time) |- ! !! Continuous frequency !! Discrete frequencies |- ! Transform | <math>S(f)\, \triangleq\, \int_{-\infty}^{\infty} s(t) \cdot e^{-i2\pi f t} \,dt</math> || <math>\underbrace{\frac{1}{P}\cdot S\left(\frac{k}{P}\right)}_ {S[k]}\, \triangleq\, \frac{1}{P} \int_{-\infty}^{\infty} s(t) \cdot e^{-i2\pi \frac{k}{P} t}\,dt \equiv \frac{1}{P} \int_P s_{_P}(t) \cdot e^{-i2\pi \frac{k}{P} t} \,dt</math> |- ! Inverse | <math>s(t) = \int_{-\infty}^{\infty} S(f) \cdot e^{ i2\pi f t}\, df</math> ||<math>\underbrace{s_{_P}(t) = \sum_{k=-\infty}^{\infty} S[k] \cdot e^{i2\pi \frac{k}{P} t}}_{\text{Poisson summation formula (Fourier series)}}\,</math> |} {| class="wikitable" style="text-align:left" |+ <math>s(nT)</math> transforms (discrete-time) |- ! !! Continuous frequency !! Discrete frequencies |- ! Transform | <math>\underbrace{S_\tfrac{1}{T}(f)\, \triangleq\, \sum_{n=-\infty}^{\infty} s[n]\cdot e^{-i2\pi f nT}}_{\text{Poisson summation formula (DTFT)}}</math> || <math> \begin{align} \underbrace{S_\tfrac{1}{T}\left(\frac{k}{NT}\right)}_ {S[k]}\, &\triangleq\, \sum_{n=-\infty}^{\infty} s[n]\cdot e^{-i2\pi \frac{kn}{N}}\\ &\equiv \underbrace{\sum_{N} s_{_N}[n]\cdot e^{-i2\pi \frac{kn}{N}}}_{\text{DFT}}\, \end{align} </math> |- ! Inverse | <math>s[n] = \underbrace{T \int_\frac{1}{T} S_\tfrac{1}{T}(f)\cdot e^{i2\pi f nT} \,df}_{\text{Fourier series coefficient}}</math> <math>\sum_{n=-\infty}^{\infty} s[n]\cdot \delta(t-nT) = \underbrace{\int_{-\infty}^{\infty} S_\tfrac{1}{T}(f)\cdot e^{i2\pi f t}\,df}_{\text{inverse Fourier transform}}\,</math> || <math> s_{_N}[n] = \underbrace{\frac{1}{N} \sum_{N} S[k]\cdot e^{i2\pi \frac{kn}{N}}}_{\text{inverse DFT}} </math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier analysis
(section)
Add topic