Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Exponential distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Memorylessness property of exponential random variable=== An exponentially distributed random variable ''T'' obeys the relation <math display="block">\Pr \left (T > s + t \mid T > s \right ) = \Pr(T > t), \qquad \forall s, t \ge 0.</math> This can be seen by considering the [[complementary cumulative distribution function]]: <math display="block"> \begin{align} \Pr\left(T > s + t \mid T > s\right) &= \frac{\Pr\left(T > s + t \cap T > s\right)}{\Pr\left(T > s\right)} \\[4pt] &= \frac{\Pr\left(T > s + t \right)}{\Pr\left(T > s\right)} \\[4pt] &= \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} \\[4pt] &= e^{-\lambda t} \\[4pt] &= \Pr(T > t). \end{align} </math> When ''T'' is interpreted as the waiting time for an event to occur relative to some initial time, this relation implies that, if ''T'' is conditioned on a failure to observe the event over some initial period of time ''s'', the distribution of the remaining waiting time is the same as the original unconditional distribution. For example, if an event has not occurred after 30 seconds, the [[conditional probability]] that occurrence will take at least 10 more seconds is equal to the unconditional probability of observing the event more than 10 seconds after the initial time. The exponential distribution and the [[geometric distribution]] are [[memorylessness|the only memoryless probability distributions]]. The exponential distribution is consequently also necessarily the only continuous probability distribution that has a constant [[failure rate]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Exponential distribution
(section)
Add topic