Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Error function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Inverse functions=== [[File:Mplwp erf inv.svg|thumb|300px|Inverse error function]] Given a complex number {{mvar|z}}, there is not a ''unique'' complex number {{mvar|w}} satisfying {{math|1=erf ''w'' = ''z''}}, so a true inverse function would be multivalued. However, for {{math|β1 < ''x'' < 1}}, there is a unique ''real'' number denoted {{math|erf<sup>β1</sup> ''x''}} satisfying <math display="block">\operatorname{erf}\left(\operatorname{erf}^{-1} x\right) = x.</math> The '''inverse error function''' is usually defined with domain {{open-open|β1,1}}, and it is restricted to this domain in many computer algebra systems. However, it can be extended to the disk {{math|{{abs|''z''}} < 1}} of the complex plane, using the Maclaurin series<ref>{{cite arXiv | last1 = Dominici | first1 = Diego | title = Asymptotic analysis of the derivatives of the inverse error function | eprint = math/0607230 | year = 2006}}</ref> <math display="block">\operatorname{erf}^{-1} z=\sum_{k=0}^\infty\frac{c_k}{2k+1}\left (\frac{\sqrt\pi}{2}z\right )^{2k+1},</math> where {{math|1=''c''<sub>0</sub> = 1}} and <math display="block">\begin{align} c_k & =\sum_{m=0}^{k-1}\frac{c_m c_{k-1-m}}{(m+1)(2m+1)} \\[1ex] &= \left\{1,1,\frac{7}{6},\frac{127}{90},\frac{4369}{2520},\frac{34807}{16200},\ldots\right\}. \end{align}</math> So we have the series expansion (common factors have been canceled from numerators and denominators): <math display="block">\operatorname{erf}^{-1} z = \frac{\sqrt{\pi}}{2} \left (z + \frac{\pi}{12}z^3 + \frac{7\pi^2}{480}z^5 + \frac{127\pi^3}{40320}z^7 + \frac{4369\pi^4}{5806080} z^9 + \frac{34807\pi^5}{182476800}z^{11} + \cdots\right ).</math> (After cancellation the numerator and denominator values in {{oeis|A092676}} and {{oeis|A092677}} respectively; without cancellation the numerator terms are values in {{oeis|A002067}}.) The error function's value at {{math|Β±β}} is equal to {{math|Β±1}}. For {{math|{{abs|''z''}} < 1}}, we have {{math|1=erf(erf<sup>β1</sup> ''z'') = ''z''}}. The '''inverse complementary error function''' is defined as <math display="block">\operatorname{erfc}^{-1}(1-z) = \operatorname{erf}^{-1} z.</math> For real {{mvar|x}}, there is a unique ''real'' number {{math|erfi<sup>β1</sup> ''x''}} satisfying {{math|1=erfi(erfi<sup>β1</sup> ''x'') = ''x''}}. The '''inverse imaginary error function''' is defined as {{math|erfi<sup>β1</sup> ''x''}}.<ref>{{cite arXiv | last1 = Bergsma | first1 = Wicher | title = On a new correlation coefficient, its orthogonal decomposition and associated tests of independence | eprint = math/0604627 | year = 2006}}</ref> For any real ''x'', [[Newton's method]] can be used to compute {{math|erfi<sup>β1</sup> ''x''}}, and for {{math|β1 β€ ''x'' β€ 1}}, the following Maclaurin series converges: <math display="block">\operatorname{erfi}^{-1} z =\sum_{k=0}^\infty\frac{(-1)^k c_k}{2k+1} \left( \frac{\sqrt\pi}{2} z \right)^{2k+1},</math> where {{math|''c''<sub>''k''</sub>}} is defined as above.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Error function
(section)
Add topic