Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Equivalence class
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Quotient space in topology== In [[topology]], a [[Quotient space (topology)|quotient space]] is a [[topological space]] formed on the set of equivalence classes of an equivalence relation on a topological space, using the original space's topology to create the topology on the set of equivalence classes. In [[abstract algebra]], [[congruence relation]]s on the underlying set of an algebra allow the algebra to induce an algebra on the equivalence classes of the relation, called a [[Quotient (universal algebra)|quotient algebra]]. In [[linear algebra]], a [[Quotient space (linear algebra)|quotient space]] is a vector space formed by taking a [[quotient group]], where the quotient homomorphism is a [[linear map]]. By extension, in abstract algebra, the term quotient space may be used for [[quotient module]]s, [[quotient ring]]s, [[quotient group]]s, or any quotient algebra. However, the use of the term for the more general cases can as often be by analogy with the orbits of a group action. The orbits of a [[Group action (mathematics)|group action]] on a set may be called the quotient space of the action on the set, particularly when the orbits of the group action are the right [[coset]]s of a subgroup of a group, which arise from the action of the subgroup on the group by left translations, or respectively the left cosets as orbits under right translation. A normal subgroup of a topological group, acting on the group by translation action, is a quotient space in the senses of topology, abstract algebra, and group actions simultaneously. Although the term can be used for any equivalence relation's set of equivalence classes, possibly with further structure, the intent of using the term is generally to compare that type of equivalence relation on a set <math>X,</math> either to an equivalence relation that induces some structure on the set of equivalence classes from a structure of the same kind on <math>X,</math> or to the orbits of a group action. Both the sense of a structure preserved by an equivalence relation, and the study of [[Invariant (mathematics)|invariants]] under group actions, lead to the definition of [[#Invariants|invariants]] of equivalence relations given above.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Equivalence class
(section)
Add topic