Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Elliptic function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Weierstrass β-function== {{Main|Weierstrass elliptic function}} One of the most important elliptic functions is the Weierstrass <math>\wp</math>-function. For a given period lattice <math>\Lambda</math> it is defined by : <math>\wp(z)=\frac1{z^2}+\sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac1{(z-\lambda)^2}-\frac1{\lambda^2}\right).</math> It is constructed in such a way that it has a pole of order two at every lattice point. The term <math>-\frac1{\lambda^2}</math> is there to make the series convergent. <math>\wp</math> is an even elliptic function; that is, <math>\wp(-z)=\wp(z)</math>.<ref name=":0">{{citation|surname1=K. Chandrasekharan|title=Elliptic functions|publisher=Springer-Verlag|publication-place=Berlin|at=p. 28|isbn=0-387-15295-4|date=1985|language=German }}</ref> Its derivative : <math>\wp'(z)=-2\sum_{\lambda\in\Lambda}\frac1{(z-\lambda)^3}</math> is an odd function, i.e. <math>\wp'(-z)=-\wp'(z).</math><ref name=":0" /> One of the main results of the theory of elliptic functions is the following: Every elliptic function with respect to a given period lattice <math>\Lambda</math> can be expressed as a rational function in terms of <math>\wp</math> and <math>\wp'</math>.<ref>{{citation|surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 275|isbn=978-3-540-32058-6|date=2006|language=German }}</ref> The <math>\wp</math>-function satisfies the [[differential equation]] : <math>\wp'(z)^2=4\wp(z)^3-g_2\wp(z)-g_3,</math> where <math>g_2</math> and <math>g_3</math> are constants that depend on <math>\Lambda</math>. More precisely, <math>g_2(\omega_1,\omega_2)=60G_4(\omega_1,\omega_2)</math> and <math>g_3(\omega_1,\omega_2)=140G_6(\omega_1,\omega_2)</math>, where <math>G_4</math> and <math>G_6</math> are so called [[Eisenstein series]].<ref>{{citation|surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 276|isbn=978-3-540-32058-6|date=2006|language=German }}</ref> In algebraic language, the field of elliptic functions is isomorphic to the field : <math>\mathbb C(X)[Y]/(Y^2-4X^3+g_2X+g_3)</math>, where the isomorphism maps <math>\wp</math> to <math>X</math> and <math>\wp'</math> to <math>Y</math>.<gallery> File:Weierstrass-p-1.jpg|Weierstrass <math>\wp</math>-function with period lattice <math>\Lambda=\mathbb{Z}+e^{2\pi i/6}\mathbb{Z} </math> File:Weierstrass-dp-1.jpg|Derivative of the <math>\wp</math>-function </gallery>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Elliptic function
(section)
Add topic