Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipsoid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Determining the ellipse of a plane section === [[File:Ellipso-eb-beisp.svg|thumb|Plane section of an ellipsoid (see example)]] '''Given:''' Ellipsoid {{math|{{sfrac|''x''<sup>2</sup>|''a''<sup>2</sup>}} + {{sfrac|''y''<sup>2</sup>|''b''<sup>2</sup>}} + {{sfrac|''z''<sup>2</sup>|''c''<sup>2</sup>}} {{=}} 1}} and the plane with equation {{math|''n<sub>x</sub>x'' + ''n<sub>y</sub>y'' + ''n<sub>z</sub>z'' {{=}} ''d''}}, which have an ellipse in common. '''Wanted:''' Three vectors {{math|'''f'''<sub>0</sub>}} (center) and {{math|'''f'''<sub>1</sub>}}, {{math|'''f'''<sub>2</sub>}} (conjugate vectors), such that the ellipse can be represented by the parametric equation :<math>\mathbf x = \mathbf f_0 + \mathbf f_1\cos t + \mathbf f_2\sin t</math> (see [[Ellipse#Ellipse as an affine image of the unit circle x²+y²=1|ellipse]]). [[File:Ellipso-eb-ku.svg|300px|thumb|Plane section of the unit sphere (see example)]] '''Solution:''' The scaling {{math|1=''u'' = {{sfrac|''x''|''a''}}, ''v'' = {{sfrac|''y''|''b''}}, ''w'' = {{sfrac|''z''|''c''}}}} transforms the ellipsoid onto the unit sphere {{math|''u''<sup>2</sup> + ''v''<sup>2</sup> + ''w''<sup>2</sup> {{=}} 1}} and the given plane onto the plane with equation :<math>\ n_x au + n_y bv + n_z cw = d. </math> Let {{math|''m<sub>u</sub>u'' + ''m<sub>v</sub>v'' + ''m<sub>w</sub>w'' {{=}} ''δ''}} be the [[Hesse normal form]] of the new plane and :<math>\;\mathbf m = \begin{bmatrix} m_u \\ m_v \\ m_w \end{bmatrix}\;</math> its unit normal vector. Hence :<math>\mathbf e_0 = \delta \mathbf m \;</math> is the ''center'' of the intersection circle and :<math>\;\rho = \sqrt{1 - \delta^2}\;</math> its radius (see diagram). Where {{math|''m<sub>w</sub>'' {{=}} ±1}} (i.e. the plane is horizontal), let :<math>\ \mathbf e_1 = \begin{bmatrix} \rho \\ 0 \\ 0 \end{bmatrix},\qquad \mathbf e_2 = \begin{bmatrix} 0 \\ \rho \\ 0 \end{bmatrix}.</math> Where {{math|''m<sub>w</sub>'' ≠ ±1}}, let :<math >\mathbf e_1 = \frac{\rho}{\sqrt{m_u^2 + m_v^2}}\, \begin{bmatrix} m_v \\ -m_u \\ 0 \end{bmatrix}\, ,\qquad \mathbf e_2 = \mathbf m \times \mathbf e_1\ .</math> In any case, the vectors {{math|'''e'''<sub>1</sub>, '''e'''<sub>2</sub>}} are orthogonal, parallel to the intersection plane and have length {{mvar|ρ}} (radius of the circle). Hence the intersection circle can be described by the parametric equation :<math>\;\mathbf u = \mathbf e_0 + \mathbf e_1\cos t + \mathbf e_2\sin t\;.</math> The reverse scaling (see above) transforms the unit sphere back to the ellipsoid and the vectors {{math|'''e'''<sub>0</sub>, '''e'''<sub>1</sub>, '''e'''<sub>2</sub>}} are mapped onto vectors {{math|'''f'''<sub>0</sub>, '''f'''<sub>1</sub>, '''f'''<sub>2</sub>}}, which were wanted for the parametric representation of the intersection ellipse. How to find the vertices and semi-axes of the ellipse is described in [[Ellipse#Ellipse as an affine image of the unit circle x²+y²=1|ellipse]]. '''Example:''' The diagrams show an ellipsoid with the semi-axes {{math|1=''a'' = 4, ''b'' = 5, ''c'' = 3}} which is cut by the plane {{math|1=''x'' + ''y'' + ''z'' = 5}}. {{clear}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipsoid
(section)
Add topic