Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Electromagnetic radiation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Wave–particle duality === {{Main|Wave–particle duality}} The modern theory that explains the nature of light includes the notion of wave–particle duality. The theory is based on the concept that every quantum entity can show wave-like or particle-like behaviors, depending on observation. The observation led to the collapse of the entity's [[wave function]]. If it is based on the [[Copenhagen interpretation]], the observation does really collapse the wave function; for the [[many-worlds interpretation]], all possible outcomes of the collapse happened in [[Multiverse|parallel universes]]; for the [[pilot wave theory]], the particle behaviour is simply determined by waves. The duality nature of a real photon has been observed in the [[double-slit experiment]]. Together, wave and particle effects fully explain the emission and absorption spectra of EM radiation. The matter-composition of the medium through which the light travels determines the nature of the absorption and emission spectrum. These bands correspond to the allowed energy levels in the atoms. Dark bands in the [[absorption spectroscopy|absorption spectrum]] are due to the atoms in an intervening medium between source and observer. The atoms absorb certain frequencies of the light between emitter and detector/eye, then emit them in all directions. A dark band appears to the detector, due to the radiation scattered out of the [[light beam]]. For instance, dark bands in the light emitted by a distant [[star]] are due to the atoms in the star's atmosphere.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Electromagnetic radiation
(section)
Add topic