Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Electricity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Electromagnets=== {{Main|Electromagnets}} [[File:Electromagnetism.svg|thumb|left|alt=A wire carries a current towards the reader. Concentric circles representing the magnetic field circle anticlockwise around the wire, as viewed by the reader.|Magnetic field circles around a current]] Ørsted's discovery in 1821 that a [[magnetic field]] existed around all sides of a wire carrying an electric current indicated that there was a direct relationship between electricity and magnetism. Moreover, the interaction seemed different from gravitational and electrostatic forces, the two forces of nature then known. The force on the compass needle did not direct it to or away from the current-carrying wire, but acted at right angles to it.<ref name=berkson/>{{rp|p=370}} Ørsted's words were that "the electric conflict acts in a revolving manner." The force also depended on the direction of the current, for if the flow was reversed, then the force did too.<ref> {{Citation | first = Silvanus P. | last = Thompson | title = Michael Faraday: His Life and Work | publisher = Elibron Classics | page = 79 | year = 2004 | isbn =1-4212-7387-X}} </ref> Ørsted did not fully understand his discovery, but he observed the effect was reciprocal: a current exerts a force on a magnet, and a magnetic field exerts a force on a current. The phenomenon was further investigated by [[André-Marie Ampère|Ampère]], who discovered that two parallel current-carrying wires exerted a force upon each other: two wires conducting currents in the same direction are attracted to each other, while wires containing currents in opposite directions are forced apart.<ref name="elec_princ_92-93"> {{citation | last = Morely & Hughes | title=Principles of Electricity, Fifth edition | pages=92–93}}</ref> The interaction is mediated by the magnetic field each current produces and forms the basis for the international [[Ampere#Definition|definition of the ampere]].<ref name="elec_princ_92-93"/> [[File:Electric motor cycle 3.png|thumb|alt=A cut-away diagram of a small electric motor|The electric motor exploits an important effect of electromagnetism: a current through a magnetic field experiences a force at right angles to both the field and current.]] This relationship between magnetic fields and currents is extremely important, for it led to Michael Faraday's invention of the [[electric motor]] in 1821. Faraday's [[homopolar motor]] consisted of a [[permanent magnet]] sitting in a pool of [[Mercury (element)|mercury]]. A current was allowed through a wire suspended from a pivot above the magnet and dipped into the mercury. The magnet exerted a tangential force on the wire, making it circle around the magnet for as long as the current was maintained.<ref name=iet_faraday> {{Citation |last=Institution of Engineering and Technology |author-link=Institution of Engineering and Technology |title=Michael Faraday: Biography |url=http://www.iee.org/TheIEE/Research/Archives/Histories&Biographies/Faraday.cfm |access-date=2007-12-09 |url-status=dead |archive-url=https://web.archive.org/web/20070703063432/http://www.iee.org/TheIEE/Research/Archives/Histories%26Biographies/Faraday.cfm |archive-date=2007-07-03 }} </ref> Experimentation by Faraday in 1831 revealed that a wire moving perpendicular to a magnetic field developed a potential difference between its ends. Further analysis of this process, known as [[electromagnetic induction]], enabled him to state the principle, now known as [[Faraday's law of induction]], that the potential difference induced in a closed circuit is proportional to the rate of change of [[magnetic flux]] through the loop. Exploitation of this discovery enabled him to invent the first [[electrical generator]] in 1831, in which he converted the mechanical energy of a rotating copper disc to electrical energy.<ref name=iet_faraday/> [[Faraday's disc]] was inefficient and of no use as a practical generator, but it showed the possibility of generating electric power using magnetism, a possibility that would be taken up by those that followed on from his work.<ref>{{Cite book |last=Lees |first=James |url=https://books.google.com/books?id=EV4wDwAAQBAJ&pg=PT98 |title=Physics in 50 Milestone Moments: A Timeline of Scientific Landmarks |date=2017|publisher=Quad Books |isbn=978-0-85762-762-9 |language=en|at=1831: Michael Faraday creates the Faraday disc}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Electricity
(section)
Add topic