Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Elastic collision
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relativistic derivation using hyperbolic functions=== Using the so-called ''parameter of velocity'' <math>s</math> (usually called the [[rapidity]]), <math display="block">\frac{v}{c}=\tanh(s),</math> we get <math display="block">\sqrt{1-\frac{v^2}{c^2}}=\operatorname{sech}(s).</math> Relativistic energy and momentum are expressed as follows: <math display="block">\begin{align} E &= \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}} = m c^2 \cosh(s) \\ p &= \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}=m c \sinh(s) \end{align}</math> Equations sum of energy and momentum colliding masses <math>m_1</math> and <math>m_2,</math> (velocities <math>v_1, v_2, u_1, u_2</math> correspond to the velocity parameters <math>s_1, s_2, s_3, s_4</math>), after dividing by adequate power <math>c</math> are as follows: <math display="block">\begin{align} m_1 \cosh(s_1)+m_2 \cosh(s_2) &= m_1 \cosh(s_3)+m_2 \cosh(s_4) \\ m_1 \sinh(s_1)+m_2 \sinh(s_2) &= m_1 \sinh(s_3)+m_2 \sinh(s_4) \end{align}</math> and dependent equation, the sum of above equations: <math display="block">m_1 e^{s_1}+m_2 e^{s_2}=m_1 e^{s_3}+m_2 e^{s_4}</math> subtract squares both sides equations "momentum" from "energy" and use the identity <math display="inline">\cosh^2(s)-\sinh^2(s)=1,</math> after simplifying we get: <math display="block">2 m_1 m_2 (\cosh(s_1) \cosh(s_2)-\sinh(s_2) \sinh(s_1)) = 2 m_1 m_2 (\cosh(s_3) \cosh(s_4)-\sinh(s_4) \sinh(s_3))</math> for non-zero mass, using the hyperbolic trigonometric identity <math display="inline">\cosh(a-b)=\cosh(a)\cosh(b)-\sinh(b)\sinh(a),</math> we get: <math display="block">\cosh(s_1-s_2) = \cosh(s_3-s_4)</math> as functions <math>\cosh(s)</math> is even we get two solutions: <math display="block">\begin{align} s_1-s_2 &= s_3-s_4 \\ s_1-s_2 &= -s_3+s_4 \end{align}</math> from the last equation, leading to a non-trivial solution, we solve <math>s_2</math> and substitute into the dependent equation, we obtain <math>e^{s_1}</math> and then <math>e^{s_2},</math> we have: <math display="block">\begin{align} e^{s_1} &= e^{s_4}{\frac{m_1 e^{s_3}+m_2 e^{s_4}} {m_1 e^{s_4}+m_2 e^{s_3}}} \\ e^{s_2} &= e^{s_3}{\frac{m_1 e^{s_3}+m_2 e^{s_4}} {m_1 e^{s_4}+m_2 e^{s_3}}} \end{align}</math> It is a solution to the problem, but expressed by the parameters of velocity. Return substitution to get the solution for velocities is: <math display="block">\begin{align} v_1/c &= \tanh(s_1) = {\frac{e^{s_1}-e^{-s_1}} {e^{s_1}+e^{-s_1}}} \\ v_2/c &= \tanh(s_2) = {\frac{e^{s_2}-e^{-s_2}} {e^{s_2}+e^{-s_2}}} \end{align}</math> Substitute the previous solutions and replace: <math>e^{s_3}=\sqrt{\frac{c+u_1} {c-u_1}}</math> and <math>e^{s_4}=\sqrt{\frac{c+u_2}{c-u_2}}, </math> after long transformation, with substituting: <math display="inline"> Z=\sqrt{\left(1-u_1^2/c^2\right) \left(1-u_2^2/c^2\right)} </math> we get: <math display="block">\begin{align} v_1 &= \frac{2 m_1 m_2 c^2 u_2 Z+2 m_2^2 c^2 u_2-(m_1^2+m_2^2) u_1 u_2^2+(m_1^2-m_2^2) c^2 u_1} {2 m_1 m_2 c^2 Z-2 m_2^2 u_1 u_2-(m_1^2-m_2^2) u_2^2+(m_1^2+m_2^2) c^2} \\ v_2 &= \frac{2 m_1 m_2 c^2 u_1 Z+2 m_1^2 c^2 u_1-(m_1^2+m_2^2) u_1^2 u_2+(m_2^2-m_1^2) c^2 u_2} {2 m_1 m_2 c^2 Z-2 m_1^2 u_1 u_2-(m_2^2-m_1^2) u_1^2+(m_1^2+m_2^2) c^2}\,. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Elastic collision
(section)
Add topic