Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Digital signal processing
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Time-frequency analysis=== A time-frequency representation of signal can capture both temporal evolution and frequency structure of analyzed signal. Temporal and frequency resolution are limited by the principle of uncertainty and the tradeoff is adjusted by the width of analysis window. Linear techniques such as [[Short-time Fourier transform]], [[wavelet transform]], [[filter bank]],<ref>{{Cite conference| last1 = So| first1 = Stephen| last2 = Paliwal| first2 = Kuldip K.| title = Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies| book-title = Ninth European Conference on Speech Communication and Technology| date = 2005}}</ref> non-linear (e.g., [[Wigner–Ville transform]]<ref name = "Ribeiro" />) and [[autoregressive]] methods (e.g. segmented Prony method)<ref name = "Ribeiro" /><ref>{{Cite journal| doi = 10.1515/acgeo-2015-0012| issn = 1895-6572| volume = 63| issue = 3| pages = 652–678| last1 = Mitrofanov| first1 = Georgy| last2 = Priimenko| first2 = Viatcheslav| title = Prony Filtering of Seismic Data| journal = Acta Geophysica| date = 2015-06-01| bibcode = 2015AcGeo..63..652M| s2cid = 130300729| doi-access = free}}</ref><ref>{{Cite journal| doi = 10.20403/2078-0575-2020-2-55-67| issn = 2078-0575| issue = 2| pages = 55–67| last1 = Mitrofanov| first1 = Georgy| last2 = Smolin| first2 = S. N.| last3 = Orlov| first3 = Yu. A.| last4 = Bespechnyy| first4 = V. N.| title = Prony decomposition and filtering| journal = Geology and Mineral Resources of Siberia| access-date = 2020-09-08| date = 2020| s2cid = 226638723| url = http://www.jourgimss.ru/en/SitePages/catalog/2020/02/abstract/2020_2_55.aspx}}</ref> are used for representation of signal on the time-frequency plane. Non-linear and segmented Prony methods can provide higher resolution, but may produce undesirable artifacts. Time-frequency analysis is usually used for analysis of non-stationary signals. For example, methods of [[fundamental frequency]] estimation, such as RAPT and PEFAC<ref>{{Cite journal| doi = 10.1109/TASLP.2013.2295918| issn = 2329-9290| volume = 22| issue = 2| pages = 518–530| last1 = Gonzalez| first1 = Sira| last2 = Brookes| first2 = Mike| title = PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise| journal = IEEE/ACM Transactions on Audio, Speech, and Language Processing| access-date = 2017-12-03| date = February 2014| s2cid = 13161793| url = https://ieeexplore.ieee.org/document/6701334}}</ref> are based on windowed spectral analysis.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Digital signal processing
(section)
Add topic