Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Definite matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == {{unordered list | The [[identity matrix]] <math>I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> is positive-definite (and as such also positive semi-definite). It is a real symmetric matrix, and, for any non-zero column vector '''z''' with real entries ''a'' and ''b'', one has <math display="block"> \mathbf{z}^\mathsf{T} I\mathbf{z} = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = a^2 + b^2.</math> Seen as a complex matrix, for any non-zero column vector ''z'' with complex entries ''a'' and ''b'' one has <math display="block">\mathbf{z}^*I\mathbf{z} = \begin{bmatrix} \overline{a} & \overline{b} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b\end{bmatrix} = \overline{a}a + \overline{b}b = |a|^2 + |b|^2.</math> Either way, the result is positive since <math>\mathbf z</math> is not the zero vector (that is, at least one of <math>a</math> and <math>b</math> is not zero). | The real symmetric matrix <math display="block">M = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}</math> is positive-definite since for any non-zero column vector '''z''' with entries ''a'', ''b'' and ''c'', we have <math display="block">\begin{align} \mathbf{z}^\mathsf{T} M \mathbf{z} = \left( \mathbf{z}^\mathsf{T} M \right) \mathbf{z} &= \begin{bmatrix} (2a - b) & (-a + 2b - c) & (-b + 2c) \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \\ &= (2a - b)a + (-a + 2b - c)b + (-b + 2c)c \\ &= 2a^2 - ba - ab + 2b^2 - cb - bc + 2c^2 \\ &= 2a^2 - 2ab + 2b^2 - 2bc + 2c^2 \\ &= a^2 + a^2 - 2ab + b^2 + b^2- 2bc + c^2 + c^2 \\ &= a^2 + (a - b)^2 + (b - c)^2 + c^2 \end{align}</math> This result is a sum of squares, and therefore non-negative; and is zero only if <math>a = b = c = 0,</math> that is, when <math>\mathbf{z}</math> is the zero vector. | For any real [[invertible matrix]] <math>A,</math> the product <math>A^\mathsf{T} A</math> is a positive definite matrix (if the means of the columns of A are 0, then this is also called the [[covariance matrix]]). A simple proof is that for any non-zero vector <math>\mathbf{z},</math> the condition <math>\mathbf{z}^\mathsf{T} A^\mathsf{T} A\mathbf{z} = (A\mathbf{z})^\mathsf{T} (A\mathbf{z}) = \|A\mathbf{z}\|^2 > 0,</math> since the invertibility of matrix <math>A</math> means that <math>A\mathbf{z} \neq 0.</math> | The example <math>M</math> above shows that a matrix in which some elements are negative may still be positive definite. Conversely, a matrix whose entries are all positive is not necessarily positive definite, as for example <math display="block">N = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix},</math> for which <math>\begin{bmatrix} -1 & 1 \end{bmatrix}N\begin{bmatrix} -1 & 1 \end{bmatrix}^\mathsf{T} = -2 < 0.</math> }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Definite matrix
(section)
Add topic