Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cooperative binding
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The KNF model=== Based on results showing that the structure of cooperative proteins changed upon binding to their ligand, [[Daniel E. Koshland, Jr.|Daniel Koshland]] and colleagues<ref name=Koshland1966>{{cite journal | vauthors = Koshland DE, Némethy G, Filmer D | title = Comparison of experimental binding data and theoretical models in proteins containing subunits | journal = Biochemistry | volume = 5 | issue = 1 | pages = 365–85 | date = January 1966 | pmid = 5938952 | doi = 10.1021/bi00865a047 }}</ref> refined the biochemical explanation of the mechanism described by Pauling.<ref name=Pauling1936/> The Koshland-Némethy-Filmer (KNF) model assumes that each subunit can exist in one of two conformations: active or inactive. Ligand binding to one subunit would induce an immediate conformational change of that subunit from the inactive to the active conformation, a mechanism described as "induced fit".<ref name=Koshland1958>{{cite journal | vauthors = Koshland DE | title = Application of a Theory of Enzyme Specificity to Protein Synthesis | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 44 | issue = 2 | pages = 98–104 | date = February 1958 | pmid = 16590179 | pmc = 335371 | doi = 10.1073/pnas.44.2.98 | bibcode = 1958PNAS...44...98K | doi-access = free }}</ref> Cooperativity, according to the KNF model, would arise from interactions between the subunits, the strength of which varies depending on the relative conformations of the subunits involved. For a tetrahedric structure (they also considered linear and square structures), they proposed the following formula: :<math> \bar{Y} = \frac{K_{AB}^3(K_XK_t[X])+3K_{AB}^4K_{BB}(K_XK_t[X])^2+3K_{AB}^3K_{BB}^3(K_XK_t[X])^3+K_{BB}^6(K_XK_t[X])^4}{1+4K_{AB}^3(K_XK_t[X])+6K_{AB}^4K_{BB}(K_XK_t[X])^2+4K_{AB}^3K_{BB}^3(K_XK_t[X])^3+K_{BB}^6(K_XK_t[X])^4} </math> Where <math>K_X</math> is the constant of association for X, <math>K_t</math> is the ratio of B and A states in the absence of ligand ("transition"), <math>K_{AB}</math> and <math>K_{BB}</math> are the relative stabilities of pairs of neighbouring subunits relative to a pair where both subunits are in the A state (Note that the KNF paper actually presents <math>N_s</math>, the number of occupied sites, which is here 4 times <math>\bar{Y}</math>).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cooperative binding
(section)
Add topic