Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Communication complexity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Public coins versus private coins === Creating random protocols becomes easier when both parties have access to the same random string, known as a shared string protocol. However, even in cases where the two parties do not share a random string, it is still possible to use private string protocols with only a small communication cost. Any shared string random protocol using any number of random string can be simulated by a private string protocol that uses an extra ''O(log n)'' bits. Intuitively, we can find some set of strings that has enough randomness in it to run the random protocol with only a small increase in error. This set can be shared beforehand, and instead of drawing a random string, Alice and Bob need only agree on which string to choose from the shared set. This set is small enough that the choice can be communicated efficiently. A formal proof follows. Consider some random protocol ''P'' with a maximum error rate of 0.1. Let <math>R</math> be <math>100n</math> strings of length ''n'', numbered <math>r_1, r_2, \dots, r_{100n}</math>. Given such an <math>R</math>, define a new protocol <math>P'_R</math> which randomly picks some <math>r_i</math> and then runs ''P'' using <math>r_i</math> as the shared random string. It takes ''O''(log 100''n'') = ''O''(log ''n'') bits to communicate the choice of <math>r_i</math>. Let us define <math>p(x,y)</math> and <math>p'_R(x,y)</math> to be the probabilities that <math>P</math> and <math>P'_R</math> compute the correct value for the input <math>(x,y)</math>. For a fixed <math>(x,y)</math>, we can use [[Hoeffding's inequality]] to get the following equation: :<math>\Pr_R[|p'_R(x,y) - p(x,y)| \geq 0.1] \leq 2 \exp(-2(0.1)^2 \cdot 100n) < 2^{-2n}</math> Thus when we don't have <math>(x,y)</math> fixed: :<math>\Pr_R[\exists (x,y):\ |p'_R(x,y) - p(x,y)| \geq 0.1] \leq \sum_{(x,y)} \Pr_R[|p'_R(x,y) - p(x,y)| \geq 0.1] < \sum_{(x,y)} 2^{-2n} = 1</math> The last equality above holds because there are <math>2^{2n}</math> different pairs <math>(x,y)</math>. Since the probability does not equal 1, there is some <math>R_0</math> so that for all <math>(x,y)</math>: :<math>|p'_{R_0}(x,y) - p(x,y)| < 0.1</math> Since <math>P</math> has at most 0.1 error probability, <math>P'_{R_0}</math> can have at most 0.2 error probability.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Communication complexity
(section)
Add topic