Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Binomial distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Higher moments === <!-- Please stop changing the equation \mu_1 = 0, it is correct. The first central moment is not the mean. --> The first 6 [[central moment]]s, defined as <math> \mu _{c}=\operatorname {E} \left[(X-\operatorname {E} [X])^{c}\right] </math>, are given by : <math>\begin{align} \mu_1 &= 0, \\ \mu_2 &= np(1-p),\\ \mu_3 &= np(1-p)(1-2p),\\ \mu_4 &= np(1-p)(1+(3n-6)p(1-p)),\\ \mu_5 &= np(1-p)(1-2p)(1+(10n-12)p(1-p)),\\ \mu_6 &= np(1-p)(1-30p(1-p)(1-4p(1-p))+5np(1-p)(5-26p(1-p))+15n^2 p^2 (1-p)^2). \end{align}</math> The non-central moments satisfy : <math>\begin{align} \operatorname {E}[X] &= np, \\ \operatorname {E}[X^2] &= np(1-p)+n^2p^2, \end{align}</math> and in general <ref name="Andreas2008"> {{citation |last1=Knoblauch |first1=Andreas |title=Closed-Form Expressions for the Moments of the Binomial Probability Distribution |year=2008 |journal=SIAM Journal on Applied Mathematics |url=https://www.jstor.org/stable/40233780 |volume=69 |issue=1 |pages=197β204 |doi=10.1137/070700024 |jstor=40233780 }}</ref><ref name="Nguyen2021"> {{citation |last1=Nguyen |first1=Duy |title=A probabilistic approach to the moments of binomial random variables and application |year=2021 |journal=The American Statistician |url=https://www.tandfonline.com/doi/abs/10.1080/00031305.2019.1679257?journalCode=utas20 |volume=75 |issue=1 |pages=101β103 |doi=10.1080/00031305.2019.1679257 |s2cid=209923008 }}</ref> : <math> \operatorname {E}[X^c] = \sum_{k=0}^c \left\{ {c \atop k} \right\} n^{\underline{k}} p^k, </math> where <math>\textstyle \left\{{c\atop k}\right\}</math> are the [[Stirling numbers of the second kind]], and <math>n^{\underline{k}} = n(n-1)\cdots(n-k+1)</math> is the <math>k</math>th [[Falling and rising factorials|falling power]] of <math>n</math>. A simple bound <ref>{{Citation |last1=D. Ahle |first1=Thomas |title=Sharp and Simple Bounds for the raw Moments of the Binomial and Poisson Distributions |year=2022 |volume=182 |doi=10.1016/j.spl.2021.109306 |journal=Statistics & Probability Letters |page=109306 |arxiv=2103.17027 }}</ref> follows by bounding the Binomial moments via the [[Poisson distribution#Higher moments|higher Poisson moments]]: : <math> \operatorname {E}[X^c] \le \left(\frac{c}{\ln(c/(np)+1)}\right)^c \le (np)^c \exp\left(\frac{c^2}{2np}\right). </math> This shows that if <math>c=O(\sqrt{np})</math>, then <math>\operatorname {E}[X^c]</math> is at most a constant factor away from <math>\operatorname {E}[X]^c</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Binomial distribution
(section)
Add topic