Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Average
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Summary of types== {{see also|Mean#Other means|Central tendency#Solutions to variational problems}} {| class="wikitable" |- ! Name !! Equation or description !! As solution to optimization problem |- | [[Arithmetic mean]] || <math>\bar{x} = \frac{1}{n}\sum_{i=1}^n x_i = \frac{1}{n} (x_1 + \cdots + x_n)</math> || <math>\underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \sum_{i=1}^n (x - x_i)^2</math> |- | [[Median]] || A middle value that separates the higher half from the lower half of the data set; may not be unique if the data set contains an even number of points || <math>\underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \sum_{i=1}^n |x - x_i|</math> |- | [[Geometric median]] || A [[rotation (mathematics)|rotation]] [[invariant (mathematics)|invariant]] extension of the [[median]] for points in <math>\mathbb{R}^d</math> || <math>\underset{\vec{x} \in \mathbb{R}^d}{\operatorname{argmin}}\, \sum_{i=1}^n ||\vec{x} - \vec{x}_i||_2</math> |- | [[Tukey median]] || Another rotation invariant extension of the median for points in <math>\mathbb{R}^d</math>βa point that maximizes the [[Tukey depth]] || <math>\underset{\vec{x} \in \mathbb{R}^d}{\operatorname{argmax}}\, \underset{\vec{u} \in \mathbb{R}^d}{\operatorname{min}} \, \sum_{i=1}^n \left(\begin{cases}1, \text{ if }(\vec{x}_i-\vec{x})\cdot\vec{u} \geq 0 \\ 0, \text{ otherwise}\end{cases}\right)</math> |- | [[Mode (statistics)|Mode]] || The most frequent value in the data set || <math>\underset{x \in \mathbb{R}}{\operatorname{argmax}}\, \sum_{i=1}^n \left(\begin{cases}1, \text{ if }x = x_i \\ 0, \text{ if }x \neq x_i\end{cases}\right)</math> |- | [[Geometric mean]] || <math>\sqrt[n]{\prod_{i=1}^n x_i} = \sqrt[n]{x_1 \cdot x_2 \dotsb x_n}</math> || <math>\underset{x \in \mathbb{R}_{> 0}}{\operatorname{argmin}}\, \sum_{i=1}^n (\ln(x) - \ln(x_i))^2,\qquad \text{if }x_i > 0\,\forall\, i \in \{1,\dots,n\}</math> |- | [[Harmonic mean]] || <math>\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}}</math> || <math>\underset{x \in \mathbb{R}_{\neq 0}}{\operatorname{argmin}}\, \sum_{i=1}^n \left(\frac{1}{x} - \frac{1}{x_i}\right)^2</math> |- |[[Contraharmonic mean]] |<math>\frac{x_1^2 + x_2^2 + \cdots + x_n^2}{{x_1} +{x_2} + \cdots + {x_n}}</math> |<math>\underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \sum_{i=1}^n x_i(x - x_i)^2</math> |- | [[Lehmer mean]]|| <math>\frac{\sum_{i=1}^n x_i^p}{\sum_{i=1}^n x_i^{p-1}}</math>|| <math>\underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \sum_{i=1}^n x_i^{p-1}(x - x_i)^2</math> |- | [[Quadratic mean]]<br />(or RMS) || <math>\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2} = \sqrt{\frac{1}{n}\left(x_1^2 + x_2^2 + \cdots + x_n^2\right)}</math>|| <math>\underset{x \in \mathbb{R}_{\geq 0}}{\operatorname{argmin}}\, \sum_{i=1}^n (x^2 - x_i^2)^2</math> |- | [[Cubic mean]]|| <math>\sqrt[3]{\frac{1}{n} \sum_{i=1}^{n} x_i^3} = \sqrt[3]{\frac{1}{n}\left(x_1^3 + x_2^3 + \cdots + x_n^3\right)}</math>|| <math>\underset{x \in \mathbb{R}_{\geq 0}}{\operatorname{argmin}}\, \sum_{i=1}^n (x^3 - x_i^3)^2,\qquad \text{if }x_i \geq 0\,\forall\, i \in \{1,\dots,n\}</math> |- | [[Generalized mean]]|| <math>\sqrt[p]{\frac{1}{n} \cdot \sum_{i=1}^n x_{i}^p}</math>|| <math>\underset{x \in \mathbb{R}_{\geq 0}}{\operatorname{argmin}}\, \sum_{i=1}^n (x^p - x_i^p)^2,\qquad \text{if }x_i \geq 0\,\forall\, i \in \{1,\dots,n\}</math> |- | [[Quasi-arithmetic mean]]|| <math> f^{-1}\left(\frac{1}{n} \sum_{k=1}^{n}f(x_k) \right)</math>|| <math>\underset{x \in \operatorname{dom}(f)}{\operatorname{argmin}}\, \sum_{i=1}^n (f(x) - f(x_i))^2,\qquad \text{if } f</math> is [[Monotonic function|monotonic]] |- | [[Weighted arithmetic mean|Weighted mean]] || <math>\frac{ \sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} = \frac{w_1 x_1 + w_2 x_2 + \cdots + w_n x_n}{w_1 + w_2 + \cdots + w_n}</math> || <math>\underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \sum_{i=1}^n w_i(x - x_i)^2</math> |- | [[Truncated mean]] || The arithmetic mean of data values after a certain number or proportion of the highest and lowest data values have been discarded |- | [[Interquartile mean]] || A special case of the truncated mean, using the [[interquartile range]]. A special case of the inter-quantile truncated mean, which operates on quantiles (often [[decile]]s or [[percentile]]s) that are equidistant but on opposite sides of the median. |- | [[Midrange]] || <math>\frac{1}{2}\left(\max x + \min x\right)</math> || <math>\underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \underset{i \in \{1,\dots,n\}}{\operatorname{max}}\, |x - x_i|</math> |- | [[Winsorized mean]] || Similar to the truncated mean, but, rather than deleting the extreme values, they are set equal to the largest and smallest values that remain |- | [[Medoid]] || A representative object of a set <math>\mathcal X</math> of objects with minimal sum of dissimilarities to all the objects in the set, according to some dissimilarity function <math>d</math>. || <math>\underset{y \in \mathcal X}{\operatorname{argmin}} \sum_{i=1}^n d(y, x_i)</math> |} Even though perhaps not an average, the <math>\tau</math>th [[quantile]] (another [[summary statistic]] that generalizes the median) can similarly be expressed as a solution to the optimization problem :<math>\underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \sum_{i=1}^n \max\big((1-\tau)(x_i - x),\, \tau(x - x_i)\big) = \underset{x \in \mathbb{R}}{\operatorname{argmin}}\, \sum_{i=1}^n \big(|x - x_i| + (1 - 2\tau)\,x\big)</math>, which aims to minimize the total [[quantile regression#Sample quantile|tilted absolute value loss]] (or ''quantile'' loss or ''pinball'' loss). The [[table of mathematical symbols]] explains the symbols used below.{{explain|reason=Below? There is nothing below this sentence in this section.|date=November 2024}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Average
(section)
Add topic