Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Astronomical coordinate systems
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Converting coordinates == {{see also|Euler angles|Rotation matrix}} Conversions between the various coordinate systems are given.<ref name=Meeus> {{cite book | last = Meeus | first = Jean | title = Astronomical Algorithms | publisher = Willmann-Bell, Inc., Richmond, VA | year = 1991 |isbn=0-943396-35-2 }}, chap. 12 </ref> See the [[#Notes on conversion|notes]] before using these equations. === Notation === {{div col}} *Horizontal coordinates ** {{mvar|A}}, [[azimuth]] ** {{mvar|a}}, [[Horizontal coordinate system|altitude]] *Equatorial coordinates ** {{mvar|α}}, [[right ascension]] ** {{mvar|δ}}, [[declination]] ** {{mvar|h}}, [[hour angle]] *Ecliptic coordinates ** {{mvar|λ}}, [[ecliptic longitude]] ** {{mvar|β}}, [[ecliptic latitude]] *Galactic coordinates ** {{mvar|l}}, [[galactic longitude]] ** {{mvar|b}}, [[galactic latitude]] *Miscellaneous ** {{math|''λ''<sub>o</sub>}}, [[longitude|observer's longitude]] ** {{math|''ϕ''<sub>o</sub>}}, [[latitude|observer's latitude]] ** {{mvar|ε}}, [[Axial tilt#Earth|obliquity of the ecliptic]] (about 23.4°) ** {{math|''θ''<sub>L</sub>}}, [[sidereal time|local sidereal time]] ** {{math|''θ''<sub>G</sub>}}, [[sidereal time|Greenwich sidereal time]] {{div col end}} === Hour angle ↔ right ascension === :<math>\begin{align} h &= \theta_\text{L} - \alpha & &\mbox{or} & h &= \theta_\text{G} + \lambda_\text{o} - \alpha \\ \alpha &= \theta_\text{L} - h & &\mbox{or} & \alpha &= \theta_\text{G} + \lambda_\text{o} - h \end{align}</math> === Equatorial ↔ ecliptic === The classical equations, derived from [[spherical trigonometry]], for the longitudinal coordinate are presented to the right of a bracket; dividing the first equation by the second gives the convenient tangent equation seen on the left.<ref name=ExplSupp> {{cite book | last1 = U.S. Naval Observatory | first1=Nautical Almanac Office | last2 = H.M. Nautical Almanac Office | title = Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac | publisher = H.M. Stationery Office, London | year = 1961 }}, sec. 2A</ref> The rotation matrix equivalent is given beneath each case.<ref> {{cite book | last1 = U.S. Naval Observatory | first1=Nautical Almanac Office | editor = P. Kenneth Seidelmann | title = Explanatory Supplement to the Astronomical Almanac | publisher = University Science Books, Mill Valley, CA | year = 1992 | isbn = 0-935702-68-7 }}, section 11.43</ref> This division is ambiguous because tan has a period of 180° ({{pi}}) whereas cos and sin have periods of 360° (2{{pi}}). :<math>\begin{align} \tan\left(\lambda\right) &= {\sin\left(\alpha\right) \cos\left(\varepsilon\right) + \tan\left(\delta\right) \sin\left(\varepsilon\right) \over \cos\left(\alpha\right)}; \qquad\begin{cases} \cos\left(\beta\right) \sin\left(\lambda\right) = \cos\left(\delta\right) \sin\left(\alpha\right) \cos\left(\varepsilon\right) + \sin\left(\delta\right) \sin\left(\varepsilon\right); \\ \cos\left(\beta\right) \cos\left(\lambda\right) = \cos\left(\delta\right) \cos\left(\alpha\right). \end{cases} \\ \sin\left(\beta\right) &= \sin\left(\delta\right) \cos\left(\varepsilon\right) - \cos\left(\delta\right) \sin\left(\varepsilon\right) \sin\left(\alpha\right) \\[3pt] \begin{bmatrix} \cos\left(\beta\right)\cos\left(\lambda\right) \\ \cos\left(\beta\right)\sin\left(\lambda\right) \\ \sin\left(\beta\right) \end{bmatrix} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\left(\varepsilon\right) & \sin\left(\varepsilon\right) \\ 0 & -\sin\left(\varepsilon\right) & \cos\left(\varepsilon\right) \end{bmatrix}\begin{bmatrix} \cos\left(\delta\right)\cos\left(\alpha\right) \\ \cos\left(\delta\right)\sin\left(\alpha\right) \\ \sin\left(\delta\right) \end{bmatrix} \\[6pt] \tan\left(\alpha\right) &= {\sin\left(\lambda\right) \cos\left(\varepsilon\right) - \tan\left(\beta\right) \sin\left(\varepsilon\right) \over \cos\left(\lambda\right)} ; \qquad \begin{cases} \cos\left(\delta\right) \sin\left(\alpha\right) = \cos\left(\beta\right) \sin\left(\lambda\right) \cos\left(\varepsilon\right) - \sin\left(\beta\right) \sin\left(\varepsilon\right); \\ \cos\left(\delta\right) \cos\left(\alpha\right) = \cos\left(\beta\right) \cos\left(\lambda\right). \end{cases} \\[3pt] \sin\left(\delta\right) &= \sin\left(\beta\right) \cos\left(\varepsilon\right) + \cos\left(\beta\right) \sin\left(\varepsilon\right) \sin\left(\lambda\right). \\[6pt] \begin{bmatrix} \cos\left(\delta\right)\cos\left(\alpha\right) \\ \cos\left(\delta\right)\sin\left(\alpha\right) \\ \sin\left(\delta\right) \end{bmatrix} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\left(\varepsilon\right) & -\sin\left(\varepsilon\right) \\ 0 & \sin\left(\varepsilon\right) & \cos\left(\varepsilon\right) \end{bmatrix}\begin{bmatrix} \cos\left(\beta\right)\cos\left(\lambda\right) \\ \cos\left(\beta\right)\sin\left(\lambda\right) \\ \sin\left(\beta\right) \end{bmatrix}. \end{align}</math> === Equatorial ↔ horizontal === Azimuth ({{mvar|A}}) is measured from the south point, turning positive to the west.<ref> {{cite book | last1 = Montenbruck | first1 = Oliver | last2 = Pfleger | first2 = Thomas | title = Astronomy on the Personal Computer | publisher = Springer-Verlag Berlin Heidelberg | year = 2000 | isbn = 978-3-540-67221-0}}, pp 35-37</ref> Zenith distance, the angular distance along the [[great circle]] from the [[zenith]] to a celestial object, is simply the [[Complementary angles|complementary angle]] of the altitude: {{math|90° − ''a''}}.<ref> {{cite book | last1 = U.S. Naval Observatory | first1=Nautical Almanac Office | first2 = H.M. Nautical Almanac Office | last2 = U.K. Hydrographic Office | title = The Astronomical Almanac for the Year 2010 | publisher = U.S. Govt. Printing Office | year = 2008 |isbn = 978-0160820083 |page=M18}} </ref> :<math>\begin{align} \tan\left(A\right) &= {\sin\left(h\right) \over \cos\left(h\right) \sin\left(\phi_\text{o}\right) - \tan\left(\delta\right) \cos\left(\phi_\text{o}\right)}; \qquad \begin{cases} \cos\left(a\right) \sin\left(A\right) = \cos\left(\delta\right) \sin\left(h\right) ;\\ \cos\left(a\right) \cos\left(A\right) = \cos\left(\delta\right) \cos\left(h\right) \sin\left(\phi_\text{o}\right) - \sin\left(\delta\right) \cos\left(\phi_\text{o}\right) \end{cases} \\[3pt] \sin\left(a\right) &= \sin\left(\phi_\text{o}\right) \sin\left(\delta\right) + \cos\left(\phi_\text{o}\right) \cos\left(\delta\right) \cos\left(h\right); \end{align}</math> In solving the {{math|tan(''A'')}} equation for {{math|''A''}}, in order to avoid the ambiguity of the [[arctangent]], use of the [[atan2|two-argument arctangent]], denoted {{math|atan2(''x'',''y'')}}, is recommended. The two-argument arctangent computes the arctangent of {{math|{{sfrac|''y''|''x''}}}}, and accounts for the quadrant in which it is being computed. Thus, consistent with the convention of azimuth being measured from the south and opening positive to the west, :<math>A = -\operatorname{atan2}(y,x)</math>, where :<math>\begin{align} x &= -\sin\left(\phi_\text{o}\right) \cos\left(\delta\right) \cos\left(h\right) + \cos\left(\phi_\text{o}\right) \sin\left(\delta\right) \\ y &= \cos\left(\delta\right) \sin\left(h\right) \end{align}</math>. If the above formula produces a negative value for {{math|''A''}}, it can be rendered positive by simply adding 360°. :<math>\begin{align} \begin{bmatrix} \cos\left(a\right) \cos\left(A\right) \\ \cos\left(a\right) \sin\left(A\right) \\ \sin\left(a\right) \end{bmatrix} &= \begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & -\cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ \cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(\delta\right)\cos\left(h\right) \\ \cos\left(\delta\right)\sin\left(h\right) \\ \sin\left(\delta\right) \end{bmatrix} \\ &= \begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & -\cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ \cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(\theta_L\right) & \sin\left(\theta_L\right) & 0 \\ \sin\left(\theta_L\right) & -\cos\left(\theta_L\right) & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} \cos\left(\delta\right)\cos\left(\alpha\right) \\ \cos\left(\delta\right)\sin\left(\alpha\right) \\ \sin\left(\delta\right) \end{bmatrix}; \\[6pt] \tan\left(h\right) &= {\sin\left(A\right) \over \cos\left(A\right) \sin\left(\phi_\text{o}\right) + \tan\left(a\right) \cos\left(\phi_\text{o}\right)}; \qquad \begin{cases} \cos\left(\delta\right) \sin\left(h\right) = \cos\left(a\right) \sin\left(A\right); \\ \cos\left(\delta\right) \cos\left(h\right) = \sin\left(a\right) \cos\left(\phi_\text{o}\right) + \cos\left(a\right) \cos\left(A\right) \sin\left(\phi_\text{o}\right) \end{cases} \\[3pt] \sin\left(\delta\right) &= \sin\left(\phi_\text{o}\right) \sin\left(a\right) - \cos\left(\phi_\text{o}\right) \cos\left(a\right) \cos\left(A\right); \end{align}</math>{{efn|Depending on the azimuth convention in use, the signs of {{math|cos ''A''}} and {{math|sin ''A''}} appear in all four different combinations. Karttunen et al.,<ref name=Karttunen/> Taff,<ref name=Taff/> and Roth<ref name=Roth/> define {{math|''A''}} clockwise from the south. Lang<ref name=Lang/> defines it north through east, Smart<ref name=Smart/> north through west. Meeus (1991),<ref name=Meeus/> p. 89: {{math|sin ''δ'' {{=}} sin ''φ'' sin ''a'' − cos ''φ'' cos ''a'' cos ''A''}}; ''Explanatory Supplement'' (1961),<ref name=ExplSupp/> p. 26: {{math|sin ''δ'' {{=}} sin ''a'' sin ''φ'' + cos ''a'' cos ''A'' cos ''φ''}}.}} Again, in solving the {{math|tan(''h'')}} equation for {{math|''h''}}, use of the two-argument arctangent that accounts for the quadrant is recommended. Thus, again consistent with the convention of azimuth being measured from the south and opening positive to the west, : <math>h = \operatorname{atan2}(y, x)</math>, where :<math>\begin{align} x &= \sin\left(\phi_\text{o}\right)\cos\left(a\right) \cos\left(A\right) + \cos\left(\phi_\text{o}\right)\sin\left(a\right) \\ y &= \cos\left(a\right)\sin\left(A\right) \\[3pt] \begin{bmatrix} \cos\left(\delta\right)\cos\left(h\right) \\ \cos\left(\delta\right)\sin\left(h\right) \\ \sin\left(\delta\right) \end{bmatrix} &= \begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & \cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ -\cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(a\right) \cos\left(A\right) \\ \cos\left(a\right) \sin\left(A\right) \\ \sin\left(a\right) \end{bmatrix} \\ \begin{bmatrix} \cos\left(\delta\right) \cos\left(\alpha\right) \\ \cos\left(\delta\right) \sin\left(\alpha\right) \\ \sin\left(\delta\right) \end{bmatrix} &= \begin{bmatrix} \cos\left(\theta_L\right) & \sin\left(\theta_L\right) & 0 \\ \sin\left(\theta_L\right) & -\cos\left(\theta_L\right) & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & \cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ -\cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(a\right) \cos\left(A\right) \\ \cos\left(a\right) \sin\left(A\right) \\ \sin\left(a\right) \end{bmatrix}. \end{align}</math> === Equatorial ↔ galactic === These equations<ref>{{Cite arXiv |title=Transformation of the equatorial proper motion to the Galactic system|last=Poleski|first=Radosław|year=2013 |eprint=1306.2945 |class=astro-ph.IM}}</ref> are for converting equatorial coordinates to Galactic coordinates. :<math>\begin{align} \cos\left(l_\text{NCP} - l\right)\cos(b) &= \sin\left(\delta\right) \cos\left(\delta_\text{G}\right) - \cos\left(\delta\right)\sin\left(\delta_\text{G}\right)\cos\left(\alpha - \alpha_\text{G}\right) \\ \sin\left(l_\text{NCP} - l\right)\cos(b) &= \cos(\delta)\sin\left(\alpha - \alpha_\text{G}\right) \\ \sin\left(b\right) &= \sin\left(\delta\right) \sin\left(\delta_\text{G}\right) + \cos\left(\delta\right) \cos\left(\delta_\text{G}\right) \cos\left(\alpha - \alpha_\text{G}\right) \end{align}</math> <math>\alpha_\text{G}, \delta_\text{G}</math> are the equatorial coordinates of the North Galactic Pole and <math>l_\text{NCP}</math> is the Galactic longitude of the North Celestial Pole. Referred to [[Epoch (astronomy)|J2000.0]] the values of these quantities are: : <math>\alpha_G = 192.85948^\circ \qquad \delta_G = 27.12825^\circ \qquad l_\text{NCP}=122.93192^\circ</math> If the equatorial coordinates are referred to another [[Equinox (celestial coordinates)|equinox]], they must be [[Axial precession|precessed]] to their place at J2000.0 before applying these formulae. These equations convert to equatorial coordinates referred to [[Epoch (astronomy)|B2000.0]]. :<math>\begin{align} \sin\left(\alpha - \alpha_\text{G}\right)\cos\left(\delta\right) &= \cos\left(b\right) \sin\left(l_\text{NCP} - l\right) \\ \cos\left(\alpha - \alpha_\text{G}\right)\cos\left(\delta\right) &= \sin\left(b\right) \cos\left(\delta_\text{G}\right) - \cos\left(b\right) \sin\left(\delta_\text{G}\right)\cos\left(l_\text{NCP} - l\right) \\ \sin\left(\delta\right) &= \sin\left(b\right) \sin\left(\delta_\text{G}\right) + \cos\left(b\right) \cos\left(\delta_\text{G}\right) \cos\left(l_\text{NCP} - l\right) \end{align}</math> === Notes on conversion === * Angles in the degrees ( ° ), minutes ( ′ ), and seconds ( ″ ) of [[Minute of arc|sexagesimal measure]] must be converted to decimal before calculations are performed. Whether they are converted to decimal [[Degree (angle)|degrees]] or [[radian]]s depends upon the particular calculating machine or program. Negative angles must be carefully handled; {{nowrap|−10° 20′ 30″}} must be converted as {{nowrap|−10° −20′ −30″}}. * Angles in the hours ( <sup>h</sup> ), minutes ( <sup>m</sup> ), and seconds ( <sup>s</sup> ) of time measure must be converted to decimal [[Degree (angle)|degrees]] or [[radian]]s before calculations are performed. 1<sup>h</sup> = 15°; 1<sup>m</sup> = 15′; 1<sup>s</sup> = 15″ * Angles greater than 360° (2{{pi}}) or less than 0° may need to be reduced to the range 0°–360° (0–2{{pi}}) depending upon the particular calculating machine or program. * The cosine of a latitude (declination, ecliptic and Galactic latitude, and altitude) are never negative by definition, since the latitude varies between −90° and +90°. * [[Inverse trigonometric functions]] arcsine, arccosine and arctangent are [[quadrant (plane geometry)|quadrant]]-ambiguous, and results should be carefully evaluated. Use of the [[Atan2|second arctangent function]] (denoted in computing as {{mono|atn2(''y'',''x'')}} or {{mono|atan2(''y'',''x'')}}, which calculates the arctangent of {{math|{{sfrac|''y''|''x''}}}} using the sign of both arguments to determine the right quadrant) is recommended when calculating longitude/right ascension/azimuth. An equation which finds the [[Trigonometric functions|sine]], followed by the [[Inverse trigonometric functions|arcsin function]], is recommended when calculating latitude/declination/altitude. * Azimuth ({{math|''A''}}) is referred here to the south point of the [[horizon]], the common astronomical reckoning. An object on the [[Meridian (astronomy)|meridian]] to the south of the observer has {{math|''A''}} = {{math|''h''}} = 0° with this usage. However, n [[Astropy]]'s AltAz, in the [[Large Binocular Telescope]] FITS file convention, in [[XEphem]], in the [[International Astronomical Union|IAU]] library [[SOFA (astronomy)|Standards of Fundamental Astronomy]] and Section B of the [[Astronomical Almanac]] for example, the azimuth is East of North. In [[navigation]] and some other disciplines, azimuth is figured from the north. * The equations for altitude ({{math|''a''}}) do not account for [[atmospheric refraction]]. * The equations for horizontal coordinates do not account for [[diurnal parallax]], that is, the small offset in the position of a celestial object caused by the position of the observer on the [[Earth]]'s surface. This effect is significant for the [[Moon]], less so for the [[planet]]s, minute for [[star]]s or more distant objects. * Observer's longitude ({{math|''λ''<sub>o</sub>}}) here is measured positively eastward from the [[prime meridian]], accordingly to current [[International Astronomical Union|IAU]] standards.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Astronomical coordinate systems
(section)
Add topic