Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Arrow's impossibility theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Intuitive argument === [[Condorcet paradox|Condorcet's example]] is already enough to see the impossibility of a fair [[Ranked voting|ranked voting system]], given stronger conditions for fairness than Arrow's theorem assumes.<ref name="McLean-1995">{{Cite journal |last=McLean |first=Iain |date=1995-10-01 |title=Independence of irrelevant alternatives before Arrow |url=https://dx.doi.org/10.1016/0165-4896%2895%2900784-J |journal=Mathematical Social Sciences |volume=30 |issue=2 |pages=107β126 |doi=10.1016/0165-4896(95)00784-J |issn=0165-4896}}</ref> Suppose we have three candidates (<math>A</math>, <math>B</math>, and <math>C</math>) and three voters whose preferences are as follows: {| class="wikitable" style="text-align: center;" ! Voter !! First preference !! Second preference !! Third preference |- ! Voter 1 | A || B || C |- ! Voter 2 | B || C || A |- ! Voter 3 | C || A || B |} If <math>C</math> is chosen as the winner, it can be argued any fair voting system would say <math>B</math> should win instead, since two voters (1 and 2) prefer <math>B</math> to <math>C</math> and only one voter (3) prefers <math>C</math> to <math>B</math>. However, by the same argument <math>A</math> is preferred to <math>B</math>, and <math>C</math> is preferred to <math>A</math>, by a margin of two to one on each occasion. Thus, even though each individual voter has consistent preferences, the preferences of society are contradictory: <math>A</math> is preferred over <math>B</math> which is preferred over <math>C</math> which is preferred over <math>A</math>. Because of this example, some authors credit [[Condorcet]] with having given an intuitive argument that presents the core of Arrow's theorem.<ref name="McLean-1995" /> However, Arrow's theorem is substantially more general; it applies to methods of making decisions other than one-person-one-vote elections, such as [[Market (economics)|markets]] or [[weighted voting]], based on [[Ranked voting|ranked ballots]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Arrow's impossibility theorem
(section)
Add topic