Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Antiprism
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Derivation ==== The circumradius of the horizontal circumcircle of the regular <math>n</math>-gon at the base is :<math> R(0) = \frac{l}{2\sin\frac{\pi}{n}}. </math> The vertices at the base are at :<math>\left(\begin{array}{c}R(0)\cos\frac{2\pi m}{n} \\ R(0)\sin\frac{2\pi m}{n} \\ 0\end{array}\right),\quad m=0..n-1;</math> the vertices at the top are at :<math>\left(\begin{array}{c}R(0)\cos\frac{2\pi (m+1/2)}{n}\\R(0)\sin\frac{2\pi (m+1/2)}{n}\\h\end{array}\right), \quad m=0..n-1.</math> Via linear interpolation, points on the outer triangular edges of the antiprism that connect vertices at the bottom with vertices at the top are at :<math>\left(\begin{array}{c} \frac{R(0)}{h}[(h-z)\cos\frac{2\pi m}{n}+z\cos\frac{\pi(2m+1)}{n}]\\ \frac{R(0)}{h}[(h-z)\sin\frac{2\pi m}{n}+z\sin\frac{\pi(2m+1)}{n}]\\ \\z\end{array}\right), \quad 0\le z\le h, m=0..n-1</math> and at :<math>\left(\begin{array}{c} \frac{R(0)}{h}[(h-z)\cos\frac{2\pi (m+1)}{n}+z\cos\frac{\pi(2m+1)}{n}]\\ \frac{R(0)}{h}[(h-z)\sin\frac{2\pi (m+1)}{n}+z\sin\frac{\pi(2m+1)}{n}]\\ \\z\end{array}\right), \quad 0\le z\le h, m=0..n-1.</math> By building the sums of the squares of the <math>x</math> and <math>y</math> coordinates in one of the previous two vectors, the squared circumradius of this section at altitude <math>z</math> is :<math> R(z)^2 = \frac{R(0)^2}{h^2}[h^2-2hz+2z^2+2z(h-z)\cos\frac{\pi}{n}]. </math> The horizontal section at altitude <math>0\le z\le h</math> above the base is a <math>2n</math>-gon (truncated <math>n</math>-gon) with <math>n</math> sides of length <math>l_1(z)=l(1-z/h)</math> alternating with <math>n</math> sides of length <math>l_2(z)=lz/h</math>. (These are derived from the length of the difference of the previous two vectors.) It can be dissected into <math>n</math> isoceless triangles of edges <math>R(z),R(z)</math> and <math>l_1</math> (semiperimeter <math>R(z)+l_1(z)/2</math>) plus <math>n</math> isoceless triangles of edges <math>R(z),R(z)</math> and <math>l_2(z)</math> (semiperimeter <math>R(z)+l_2(z)/2</math>). According to Heron's formula the areas of these triangles are :<math> Q_1(z) = \frac{R(0)^2}{h^2} (h-z)\left[(h-z)\cos\frac{\pi}{n}+z\right] \sin\frac{\pi}{n} </math> and :<math> Q_2(z) = \frac{R(0)^2}{h^2} z\left[z\cos\frac{\pi}{n}+h-z\right] \sin\frac{\pi}{n} . </math> The area of the section is <math>n[Q_1(z)+Q_2(z)]</math>, and the volume is :<math> V = n\int_0^h [Q_1(z)+Q_2(z)] dz = \frac{nh}{3}R(0)^2\sin\frac{\pi}{n}(1+2\cos\frac{\pi}{n}) = \frac{nh}{12}l^2\frac{1+2\cos\frac{\pi}{n}}{\sin\frac{\pi}{n}} . </math> The volume of a right {{mvar|n}}-gonal [[Prism (geometry)|prism]] with the same {{mvar|l}} and {{mvar|h}} is: <math display=block>V_{\mathrm{prism}}=\frac{nhl^2}{4} \cot\frac{\pi}{n}</math> which is smaller than that of an antiprism.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Antiprism
(section)
Add topic