Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Analog-to-digital converter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Jitter===<!--[[Sampling (signal processing)]] links here--> When digitizing a sine wave <math>x(t)=A \sin{(2 \pi f_0 t)}</math>, the use of a non-ideal sampling clock will result in some uncertainty in when samples are recorded. Provided that the actual sampling time uncertainty due to clock [[jitter]] is <math>\Delta t</math>, the error caused by this phenomenon can be estimated as <math>E_{ap} \le |x'(t) \Delta t| \le 2A \pi f_0 \Delta t</math>. This will result in additional recorded noise that will reduce the [[effective number of bits]] (ENOB) below that predicted by [[quantization error]] alone. The error is zero for DC, small at low frequencies, but significant with signals of high amplitude and high frequency. The effect of jitter on performance can be compared to quantization error: <math>\Delta t < \frac{1}{2^q \pi f_0}</math>, where q is the number of ADC bits.{{citation needed|date=February 2019}} {| class="wikitable" style="margin: 1em auto;" |- ! rowspan="2" | Output size <br />(bits) || colspan="7" | Signal Frequency |- ! 1 Hz||1 kHz || 10 kHz || 1 MHz || 10 MHz || 100 MHz || 1 GHz |- style="text-align:right;" || 8 || style="text-align:right;"| 1,243 μs || style="text-align:right;"| 1.24 μs || style="text-align:right;"| 124 ns || style="text-align:right;"| 1.24 ns || style="text-align:right;"| 124 ps || style="text-align:right;"| 12.4 ps || style="text-align:right;"| 1.24 ps |- style="text-align:right;" || 10 || style="text-align:right;"| 311 μs || style="text-align:right;"| 311 ns || style="text-align:right;"| 31.1 ns || style="text-align:right;"| 311 ps || style="text-align:right;"| 31.1 ps || style="text-align:right;"| 3.11 ps || style="text-align:right;"| 0.31 ps |- style="text-align:right;" || 12 || style="text-align:right;"| 77.7 μs || style="text-align:right;"| 77.7 ns || style="text-align:right;"| 7.77 ns || style="text-align:right;"| 77.7 ps || style="text-align:right;"| 7.77 ps || style="text-align:right;"| 0.78 ps || style="text-align:right;"| 0.08 ps (77.7 fs) |- style="text-align:right;" || 14 || style="text-align:right;"| 19.4 μs || style="text-align:right;"| 19.4 ns || style="text-align:right;"| 1.94 ns || style="text-align:right;"| 19.4 ps || style="text-align:right;"| 1.94 ps || style="text-align:right;"| 0.19 ps || style="text-align:right;"| 0.02 ps (19.4 fs) |- | style="text-align:right;"| 16 || style="text-align:right;"| 4.86 μs || style="text-align:right;"| 4.86 ns || style="text-align:right;"| 486 ps || style="text-align:right;"| 4.86 ps || style="text-align:right;"| 0.49 ps || style="text-align:right;"| 0.05 ps (48.5 fs)|| style="text-align:center;"| – |- | style="text-align:right;"| 18 || style="text-align:right;"| 1.21 μs || style="text-align:right;"| 1.21 ns || style="text-align:right;"| 121 ps || style="text-align:right;"| 1.21 ps || style="text-align:right;"| 0.12 ps || style="text-align:center;"| – || style="text-align:center;"| – |- | style="text-align:right;"| 20 || style="text-align:right;"| 304 ns || style="text-align:right;"| 304 ps || style="text-align:right;"| 30.4 ps || style="text-align:right;"| 0.30 ps (303.56 fs) || style="text-align:center;"| 0.03 ps (30.3 fs)|| style="text-align:center;"| – || style="text-align:center;"| – |- | style="text-align:right;"| 24 || style="text-align:right;"| 18.9 ns || style="text-align:right;"| 18.9 ps || style="text-align:right;"| 1.89 ps || style="text-align:right;"| 0.019 ps (18.9 fs) || style="text-align:center;"| - || style="text-align:center;"| – || style="text-align:center;"| – |- |} Clock jitter is caused by [[phase noise]].<ref>{{citation |url=http://www.maxim-ic.com/appnotes.cfm/an_pk/800/ |title=Maxim App 800: Design a Low-Jitter Clock for High-Speed Data Converters |website=maxim-ic.com |date=July 17, 2002}}</ref><ref>{{cite web | title = Jitter effects on Analog to Digital and Digital to Analog Converters | url = http://www.thewelltemperedcomputer.com/Lib/Troisi.pdf | access-date = 19 August 2012}}</ref> The resolution of ADCs with a [[digitization]] bandwidth between 1 MHz and 1 GHz is limited by jitter.<ref>{{cite journal |doi=10.1016/j.csi.2005.12.005 |title=The effects of aperture jitter and clock jitter in wideband ADCs |last1=Löhning |first1=Michael |last2=Fettweis |first2=Gerhard |year=2007 |journal=Computer Standards & Interfaces Archive |volume =29 |issue=1 |pages=11–18 |citeseerx=10.1.1.3.9217}}</ref> For lower bandwidth conversions such as when sampling audio signals at 44.1 kHz, clock jitter has a less significant impact on performance.<ref>{{citation |last1=Redmayne |first1=Derek |last2=Steer |first2=Alison |date=8 December 2008 |url=http://www.eetimes.com/design/automotive-design/4010074/Understanding-the-effect-of-clock-jitter-on-high-speed-ADCs-Part-1-of-2- |title=Understanding the effect of clock jitter on high-speed ADCs |website=eetimes.com}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Analog-to-digital converter
(section)
Add topic