Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Adiabatic process
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Derivation of ''P''–''V'' relation for adiabatic compression and expansion=== The definition of an adiabatic process is that heat transfer to the system is zero, {{math|1=''δQ'' = 0}}. Then, according to the first law of thermodynamics, {{NumBlk||<math display="block"> d U + \delta W = \delta Q = 0, </math>|{{EquationRef|a1}}}} where {{math|''dU''}} is the change in the internal energy of the system and {{math|''δW''}} is work done ''by'' the system. Any work ({{math|''δW''}}) done must be done at the expense of internal energy {{math|''U''}}, since no heat {{math|''δQ''}} is being supplied from the surroundings. Pressure–volume work {{math|''δW''}} done ''by'' the system is defined as {{NumBlk||<math display="block"> \delta W = P \, dV. </math>|{{EquationRef|a2}}}} However, {{math|''P''}} does not remain constant during an adiabatic process but instead changes along with {{math|''V''}}. It is desired to know how the values of {{math|''dP''}} and {{math|''dV''}} relate to each other as the adiabatic process proceeds. For an ideal gas (recall ideal gas law {{math|1=''PV'' = ''nRT''}}) the internal energy is given by {{NumBlk||<math display="block"> U = \alpha n R T = \alpha P V, </math>|{{EquationRef|a3}}}} where {{math|''α''}} is the number of degrees of freedom divided by 2, {{math|''R''}} is the [[universal gas constant]] and {{math|''n''}} is the number of moles in the system (a constant). Differentiating equation (a3) yields {{NumBlk||<math display="block">\begin{align} d U &= \alpha n R \, dT\\ & = \alpha \, d (P V)\\ & = \alpha (P \, dV + V \, dP). \end{align}</math>|{{EquationRef|a4}}}} Equation (a4) is often expressed as {{math|1=''dU'' = ''nC<sub>V</sub> dT''}} because {{math|1=''C<sub>V</sub>'' = ''αR''}}. Now substitute equations (a2) and (a4) into equation (a1) to obtain <math display="block"> -P \, dV = \alpha P \, dV + \alpha V \, dP,</math> factorize {{math|−''P'' ''dV''}}: <math display="block"> -(\alpha + 1) P \, dV = \alpha V \, dP,</math> and divide both sides by {{math|''PV''}}: <math display="block"> -(\alpha + 1) \frac{dV}{V} = \alpha \frac{dP}{P}. </math> After integrating the left and right sides from {{math|''V''<sub>0</sub>}} to {{math|''V''}} and from {{math|''P''<sub>0</sub>}} to {{math|''P''}} and changing the sides respectively, <math display="block"> \ln \left( \frac{P}{P_0} \right) = -\frac{\alpha + 1}{\alpha} \ln \left( \frac{V}{V_0} \right). </math> Exponentiate both sides, substitute {{math|{{sfrac|''α'' + 1|''α''}}}} with {{math|''γ''}}, the heat capacity ratio <math display="block"> \left( \frac{P}{P_0} \right) = \left( \frac{V}{V_0} \right)^{-\gamma}, </math> and eliminate the negative sign to obtain <math display="block"> \left( \frac{P}{P_0} \right) = \left( \frac{V_0}{V} \right)^\gamma. </math> Therefore, <math display="block"> \left( \frac{P}{P_0} \right) \left( \frac{V}{V_0} \right)^\gamma = 1,</math> and <math display="block"> P_0 V_0^\gamma = P V^\gamma = \mathrm{constant}. </math> {{NumBlk||<math display="block"> \Delta U = \alpha R nT_2 - \alpha R nT_1 = \alpha Rn \Delta T. </math>|{{EquationRef|b1}}}} At the same time, the work done by the pressure–volume changes as a result from this process, is equal to {{NumBlk||<math display="block"> W = \int_{V_1}^{V_2}P \,dV. </math>|{{EquationRef|b2}}}} Since we require the process to be adiabatic, the following equation needs to be true {{NumBlk||<math display="block"> \Delta U + W = 0. </math>|{{EquationRef|b3}}}} By the previous derivation, {{NumBlk||<math display="block"> P V^\gamma = \text{constant} = P_1 V_1^\gamma. </math>|{{EquationRef|b4}}}} Rearranging (b4) gives <math display="block"> P = P_1 \left(\frac{V_1}{V} \right)^\gamma. </math> Substituting this into (b2) gives <math display="block"> W = \int_{V_1}^{V_2} P_1 \left(\frac{V_1}{V} \right)^\gamma \,dV. </math> Integrating, we obtain the expression for work, <math display="block">\begin{align} W = P_1 V_1^\gamma \frac{V_2^{1-\gamma} - V_1^{1-\gamma}}{1 - \gamma} \\ &= \frac{P_2 V_2 - P_1 V_1}{1 - \gamma}. \end{align}</math> Substituting {{math|1=''γ'' = {{sfrac|''α'' + 1|''α''}}}} in the second term, <math display="block"> W = -\alpha P_1 V_1^\gamma \left( V_2^{1-\gamma} - V_1^{1-\gamma} \right). </math> Rearranging, <math display="block"> W = -\alpha P_1 V_1 \left( \left( \frac{V_2}{V_1} \right)^{1-\gamma} - 1 \right). </math> Using the ideal gas law and assuming a constant molar quantity (as often happens in practical cases), <math display="block"> W = -\alpha n R T_1 \left( \left( \frac{V_2}{V_1} \right)^{1-\gamma} - 1 \right). </math> By the continuous formula, <math display="block"> \frac{P_2}{P_1} = \left(\frac{V_2}{V_1}\right)^{-\gamma}, </math> or <math display="block"> \left(\frac{P_2}{P_1}\right)^{-\frac{1}{\gamma}} = \frac{V_2}{V_1}. </math> Substituting into the previous expression for {{math|''W''}}, <math display="block"> W = -\alpha n R T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right). </math> Substituting this expression and (b1) in (b3) gives <math display="block"> \alpha n R (T_2 - T_1) = \alpha n R T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right). </math> Simplifying, <math display="block">\begin{align} T_2 - T_1 &= T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right), \\ \frac{T_2}{T_1} - 1 &= \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1, \\ T_2 &= T_1 \left( \frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}}. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Adiabatic process
(section)
Add topic