Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Abductive reasoning
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Set-cover abduction=== A different formalization of abduction is based on inverting the function that calculates the visible effects of the hypotheses. Formally, we are given a set of hypotheses <math>H</math> and a set of manifestations <math>M</math>; they are related by the domain knowledge, represented by a function <math>e</math> that takes as an argument a set of hypotheses and gives as a result the corresponding set of manifestations. In other words, for every subset of the hypotheses <math>H' \subseteq H</math>, their effects are known to be <math>e(H')</math>. Abduction is performed by finding a set <math>H' \subseteq H</math> such that <math>M \subseteq e(H')</math>. In other words, abduction is performed by finding a set of hypotheses <math>H'</math> such that their effects <math>e(H')</math> include all observations <math>M</math>. A common assumption is that the effects of the hypotheses are independent, that is, for every <math>H' \subseteq H</math>, it holds that <math>e(H') = \bigcup_{h \in H'} e(\{h\})</math>. If this condition is met, abduction can be seen as a form of [[set covering]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Abductive reasoning
(section)
Add topic