Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fusion power
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Records == Fusion power records vary across confinement systems. They include records pertaining to fusion energy release, and more broadly, any plasma confinement parameters, such as temperature and pressure, or discharge time (not confinement time). The record for MCF fusion energy release is 69 MJ, over 6 seconds, set by the [[Joint European Torus]] [[tokamak]] in 2023.<ref name=":2">{{Cite web |last=Tischler |first=Karl |date=February 8, 2024 |title=Breaking New Ground: JET Tokamak's Latest Fusion Energy Record Shows Mastery of Fusion Processes |url=https://euro-fusion.org/eurofusion-news/dte3record/ |access-date=February 11, 2024 |website=EUROfusion |language=en-US}}</ref> The record for ICF fusion energy release is 3.15 MJ, over 100 [[picoseconds]], set by the [[National Ignition Facility]] in 2022, which also achieved Q values greater than unity. <ref name="NYT-209221213" /><ref name="Ignition" /><ref>{{Cite web |author=Vogt |first1=Adrienne |last2=Hayes |first2=Mike |last3=Nilsen |first3=Ella |last4=Hammond |first4=Elise |date=December 13, 2022 |title=December 13, 2022 US officials announce nuclear fusion breakthrough |url=https://www.cnn.com/us/live-news/nuclear-fusion-reaction-us-announcement-12-13-22/index.html |access-date=December 14, 2022 |website=CNN |language=en-us}}</ref><ref>{{cite news |last1=Gardner |first1=Timothy |title=US scientists repeat fusion ignition breakthrough for 2nd time |url=https://www.reuters.com/business/energy/us-scientists-repeat-fusion-power-breakthrough-ft-2023-08-06/ |access-date=February 13, 2024 |work=Reuters |issue=December 13, 2022}}</ref> {| class="wikitable sortable" |+Records ! Domain !! Year !! Record !! Device !! Notes |- |MCF energy gain factor |1997 |''Q'' = 0.67 |JET<ref name="ccfe">{{cite web |title=JET |url=http://www.ccfe.ac.uk/jet.aspx |url-status=dead |archive-url=https://web.archive.org/web/20160707193828/http://www.ccfe.ac.uk/jet.aspx |archive-date=July 7, 2016 |access-date=June 26, 2016 |publisher=Culham Centre Fusion Energy}}</ref> | |- |MCF extrapolated energy gain factor |1998 |''Q''<sub>ext</sub> = 1.25 |JT-60<ref>{{cite web |date=August 7, 1998 |title=JT-60U Reaches 1.25 of Equivalent Fusion Power Gain |url=http://www-jt60.naka.jaea.go.jp/english/html/exp_rep/rep46.html |archive-url=https://web.archive.org/web/20130106002827/http://www-jt60.naka.jaea.go.jp/english/html/exp_rep/rep46.html |archive-date=January 6, 2013 |access-date=December 5, 2016}}</ref> | |- |ICF [[Fusion energy gain factor|energy gain factor]] |2022 |''Q'' = 1.54 |NIF<ref name="WP-20221212" /> | |- |MCF fusion energy |2023 |6.9{{e|7}} J |JET<ref name=":2" /> | |- |ICF fusion energy |2022 |3.15{{e|6}} J |NIF<ref name="WP-20221212" /> | |- |MCF fusion power |1997 |1.6{{e|7}} W |[[Joint European Torus|JET]]<ref name="ccfe" /> | |- |ICF fusion power |2022 |~1{{e|16}} W |NIF<ref name="WP-20221212" /> | |- | ICF plasma temperature|| 2006 || 3.7{{e|9}} K || [[Z Pulsed Power Facility]]<ref>{{cite journal |last1=Haines |first1=M. G. |last2=LePell |first2=P. D. |last3=Coverdale |first3=C. A. |last4=Jones |first4=B. |last5=Deeney |first5=C. |last6=Apruzese |first6=J. P. |date=March 23, 2006 |title=Ion viscous heating in a magnetohydrodynamically unstable Z pinch at over 2×10^9 Kelvin |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.075003 |journal=Physical Review Letters |volume=96 |issue=7 |page=075003 |doi=10.1103/PhysRevLett.96.075003 |pmid=16606100 |access-date=October 18, 2024}}</ref>|| |- |Laser ICF plasma temperature |2022 |1.25{{e|8}} K |NIF<ref name="e419">{{cite journal |last=Cartlidge |first=Edwin |date=December 1, 2022 |title=Laser-fusion milestone ignites debate |url=https://iopscience.iop.org/article/10.1088/2058-7058/35/10/16 |journal=Physics World |volume=35 |issue=10 |pages=11ii |doi=10.1088/2058-7058/35/10/16 |bibcode=2022PhyW...35.11iiC |issn=0953-8585 |access-date=April 14, 2025}}</ref> | |- |Tokamak plasma temperature |1996 |5.22{{e|8}} K |JT-60<ref name="f526">{{cite web |last=Encyclopedia |first=Energy |title=Nuclear fusion |url=https://www.energyencyclopedia.com/en/nuclear-fusion/tokamaks/milestones |access-date=April 14, 2025 |website=Energy Encyclopedia}}</ref> | |- | ICF shot rate || 2013 || 10 Hz || Electra laser at the [[Naval Research Laboratory]]<ref>{{cite journal|author=Obenschain, Stephen | display-authors=etal|title=High-energy krypton fluoride lasers for inertial fusion|journal=Applied Optics|volume=54|issue=31|year=2015|pages=F103–F122|doi=10.1364/AO.54.00F103| pmid=26560597| bibcode=2015ApOpt..54F.103O}}</ref> <ref>"Krypton Fluoride (KrF) Laser Driver for Inertial Fusion Energy"</ref> || |- |ICF plasma pressure |2022 |1{{e|14}} Pa |[[First Light Fusion]]<ref name=":1" /> | |- | MCF plasma pressure || 2016 || 2.1{{e|5}} Pa || [[Alcator C-Mod]]<ref>{{Cite web|title=New record for fusion|url=https://news.mit.edu/2016/alcator-c-mod-tokamak-nuclear-fusion-world-record-1014|access-date=October 11, 2020|website=MIT News {{!}} Massachusetts Institute of Technology|date=October 14, 2016 |language=en}}</ref> || |- | [[Lawson criterion]] || 2013 || 1.53{{e|24}} eV·s/m<sup>3</sup> || [[JT-60]]<ref>{{cite web |url=http://www-jt60.naka.jaea.go.jp/english/html/exp_rep/rep36.html |title=World Highest Fusion Triple Product Marked in High-βp H-mode Plasmas |archive-url=https://web.archive.org/web/20130106002319/http://www-jt60.naka.jaea.go.jp/english/html/exp_rep/rep36.html |archive-date=January 6, 2013 }}</ref><ref>{{Cite web|title=Measuring Progress in Fusion Energy: The Triple Product|url=https://www.fusionenergybase.com/article/measuring-progress-in-fusion-energy-the-triple-product/|access-date=October 10, 2020|website=www.fusionenergybase.com|language=en|archive-date=October 1, 2020 |archive-url=https://web.archive.org/web/20201001051629/https://www.fusionenergybase.com/article/measuring-progress-in-fusion-energy-the-triple-product/|url-status=dead}}</ref> || |- | Discharge time (field reversed configuration) || 2016 || 3{{e|-1}} s || [[Princeton field-reversed configuration|Princeton Field Reversed Configuration]]<ref>Cohen, Sam, and B. Berlinger. "Long-pulse Operation of the PFRC-2 Device." The Joint US-Japan Compact Torus. Wisconsin, Madison. August 22, 2016. Lecture.</ref> || |- | Discharge time (stellarator) || 2019 || >1{{e|2}} s || [[Wendelstein 7-X]]<ref>{{Cite web|url=https://www.ipp.mpg.de/4550215/11_18|title=Successful second round of experiments with Wendelstein 7-X|website=www.ipp.mpg.de|language=en|access-date=March 22, 2019}}</ref><ref>{{Cite web|url=https://newatlas.com/wendelstein-7-x-nuclear-fusion-records/57394|title=Wendelstein 7-X fusion reactor keeps its cool en route to record-breaking results|last=Lavars|first=Nick|date=November 26, 2018|website=newatlas.com|language=en|access-date=December 1, 2018}}</ref> || |- |Discharge time (tokamak) |2022 |>1{{e|3}} s |EAST<ref>{{Cite web|url=https://www.smithsonianmag.com/smart-news/chinas-artificial-sun-reactor-broke-record-for-nuclear-fusion-180979336/|title=China's Artificial Sun Just Broke a Record for Longest Sustained Nuclear Fusion|first1=Smithsonian|last1=Magazine|first2=Elizabeth|last2=Gamillo|website=Smithsonian Magazine}}</ref> | |- |Discharge time x temperature (tokamak) |2021 |1.2{{e|10}} K·s |EAST<ref>{{Cite web|title=China's "Artificial Sun" Fusion Reactor Just Set a World Record|url=https://futurism.com/chinas-artificial-sun-fusion-reactor-just-set-a-world-record|website=Futurism|date=June 2, 2021 }}</ref> | |- |Magnetic mirror beta |2016 |0.6 |[[Gas Dynamic Trap]]<ref name="s869">{{cite journal |last1=Ivanov |first1=A A |last2=Prikhodko |first2=V V |date=June 1, 2013 |title=Gas-dynamic trap: an overview of the concept and experimental results |journal=Plasma Physics and Controlled Fusion |volume=55 |issue=6 |page=063001 |doi=10.1088/0741-3335/55/6/063001 |bibcode=2013PPCF...55f3001I |issn=0741-3335}}</ref> | |- | Tokamak beta || 1998 || 0.4 || [[Small Tight Aspect Ratio Tokamak]]<ref>Alan Sykes, [http://www.triam.kyushu-u.ac.jp/ICPP/program/download/12-PL01.pdf "The Development of the Spherical Tokamak"] {{webarchive |url=https://web.archive.org/web/20110722072454/http://www.triam.kyushu-u.ac.jp/ICPP/program/download/12-PL01.pdf |date=July 22, 2011 }}, ICPP, Fukuoka September 2008</ref> || |- |Temperature (compact spherical tokamak) |2022 |1{{e|8}} K |[[Tokamak Energy]]<ref>{{Cite web |last=Szondy |first=David |date=March 13, 2022 |title=Tokamak Energy achieves temperature threshold for commercial fusion |url=https://newatlas.com/energy/tokamak-energy-temperature-threshold-commercial-fusion/ |access-date=March 15, 2022 |website=New Atlas |language=en-US}}</ref> | |- |Temperature x time (tokamak) |2021 |3{{e|9}} K·s |[[KSTAR]]<ref>{{Cite web |last=Lavars |first=Nick |date=November 24, 2021 |title=KSTAR fusion reactor sets record with 30-second plasma confinement |url=https://newatlas.com/energy/kstar-fusion-reactor-record-30-second-plasma/ |access-date=March 15, 2022 |website=New Atlas |language=en-US}}</ref> | |- |Stable plasma (tokamak) |2025 |1,337 seconds |[[WEST (formerly Tore Supra)|WEST]]<ref name=":0" /> | |} <!-- Fusion power trends as the plasma confinement raised to the fourth power.<ref>"Fusion energy and why it is important to chase the impossible" Dr. Melanie Windridge, TED x Warwick, April 19, 2018.</ref> Hence, getting a strong plasma trap is of real value to a fusion power plant. Plasma has a very good [[electrical conductivity]]. This opens the possibility of confining the plasma with [[magnetic field]], generally known as [[magnetic confinement fusion|magnetic confinement]]. The field puts a magnetic pressure on the plasma, which holds it in. A widely used measure of magnetic trapping in fusion is the beta ratio (plasma pressure/magnetic field pressure): <math>\beta = \frac{p}{p_{mag}} = \frac{n k_B T}{(B^2/2\mu_0)}</math><ref>{{Cite book|last=Wesson, John |title=Tokamaks|date=2004|publisher=Clarendon Press|others=Campbell, D. J.|isbn=0198509227|edition=3rd|location=Oxford|oclc=52324306}}</ref>{{rp|115}} This is the ratio of the externally applied field to the internal pressure of the plasma. A value of 1 is ideal trapping. Some examples of beta values include: # The [[Small Tight Aspect Ratio Tokamak|START]] machine: 0.32 # The [[Levitated dipole]] experiment:<ref>{{Cite journal|title=APS – 50th Annual Meeting of the Division of Plasma Physics – Event – Improved Confinement During Magnetic Levitation in LDX|url=https://meetings.aps.org/Meeting/DPP08/Session/CI1.6|journal=Bulletin of the American Physical Society|publisher=American Physical Society|volume=53|issue=14}}</ref> 0.26 # Spheromaks: ≈ 0.1,<ref name = "WHAT">{{cite journal | last1 = Ono | first1 = Y | year = 1999 | title = New relaxation of merging spheromaks to a field reversed configuration | journal = Nuclear Fusion | volume = 39 | issue = 11Y| pages = 2001–2008 | doi = 10.1088/0029-5515/39/11Y/346 | bibcode = 1999NucFu..39.2001O }}</ref> Maximum 0.2 based on Mercier limit.<ref>{{Cite web|last1=Fowler|first1=T. K.|last2=Hooper|first2=E. B.|date=June 19, 1996|title=Advanced spheromak fusion reactor|url=https://digital.library.unt.edu/ark:/67531/metadc682204/|access-date=October 11, 2020|website=ICENES `96: emerging nuclear energy systems, Obninsk (Russian Federation), Jun 1996|language=en}}</ref> # The [[DIII-D]] machine: 0.126 {{Citation needed|date=March 2015}} # The [[Gas Dynamic Trap]] a magnetic mirror: 0.6<ref>{{cite journal|title=Three Game Changing Discoveries: A Simpler Fusion Concept?|first=Thomas C.|last=Simonen|s2cid=122088138|journal=Journal of Fusion Energy|date=2016|volume=35|pages=63–68|doi=10.1007/s10894-015-0017-2}}</ref> for 5E−3 seconds.<ref name="Present">Gas Dynamic Trap (GDT). Experiments with Electron Heating. Budker Institute of Nuclear Physics, Novosibirsk State University. Siberian Branch, Russia, 2012, Thomas Simonen</ref> # The Sustained Spheromak Plasma Experiment at Los Alamos National labs < 0.05 for 4E−6 seconds.<ref>{{Cite journal|last1=Wood|first1=R.D.|last2=Hill|first2=D.N.|last3=McLean|first3=H.S.|last4=Hooper|first4=E. B.|last5=Hudson|first5=B.F.|last6=Moller|first6=J.M.|last7=Romero-Talamás|first7=C.A.|date=December 30, 2008|title=Improved magnetic field generation efficiency and higher temperature spheromak plasmas|url=http://dx.doi.org/10.1088/0029-5515/49/2/025001|journal=Nuclear Fusion|volume=49|issue=2|pages=025001|doi=10.1088/0029-5515/49/2/025001|osti=947748|issn=0029-5515}}</ref> -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fusion power
(section)
Add topic