Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Formulas for general {{math|''n''}}-dimensional functions=== {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- |500 |<math> f(\mathbf x)\,</math> |<math>\begin{align} &\hat{f_1}(\boldsymbol \xi) \triangleq \\ &\int_{\mathbb{R}^n}f(\mathbf x) e^{-i 2\pi \boldsymbol \xi \cdot \mathbf x }\, d \mathbf x \end{align}</math> |<math>\begin{align} &\hat{f_2}(\boldsymbol \omega) \triangleq \\ &\frac{1}{{(2 \pi)}^\frac{n}{2}} \int_{\mathbb{R}^n} f(\mathbf x) e^{-i \boldsymbol \omega \cdot \mathbf x}\, d \mathbf x \end{align}</math> |<math>\begin{align} &\hat{f_3}(\boldsymbol \omega) \triangleq \\ &\int_{\mathbb{R}^n}f(\mathbf x) e^{-i \boldsymbol \omega \cdot \mathbf x}\, d \mathbf x \end{align}</math> | |- |501 |<math> \chi_{[0,1]}(|\mathbf x|)\left(1-|\mathbf x|^2\right)^\delta</math> |<math> \frac{\Gamma(\delta+1)}{\pi^\delta\,|\boldsymbol \xi|^{\frac{n}{2} + \delta}} J_{\frac{n}{2}+\delta}(2\pi|\boldsymbol \xi|)</math> |<math> 2^\delta \, \frac{\Gamma(\delta+1)}{\left|\boldsymbol \omega\right|^{\frac{n}{2}+\delta}} J_{\frac{n}{2}+\delta}(|\boldsymbol \omega|)</math> |<math> \frac{\Gamma(\delta+1)}{\pi^\delta} \left|\frac{\boldsymbol \omega}{2\pi}\right|^{-\frac{n}{2}-\delta} J_{\frac{n}{2}+\delta}(\!|\boldsymbol \omega|\!)</math> |The function {{math|''χ''<sub>[0, 1]</sub>}} is the [[indicator function]] of the interval {{math|[0, 1]}}. The function {{math|Γ(''x'')}} is the gamma function. The function {{math|''J''<sub>{{sfrac|''n''|2}} + ''δ''</sub>}} is a Bessel function of the first kind, with order {{math|{{sfrac|''n''|2}} + ''δ''}}. Taking {{math|1=''n'' = 2}} and {{math|1=''δ'' = 0}} produces 402.<ref>{{harvnb|Stein|Weiss|1971|loc=Thm. 4.15}}</ref> |- |502 |<math> |\mathbf x|^{-\alpha}, \quad 0 < \operatorname{Re} \alpha < n.</math> |<math> \frac{(2\pi)^{\alpha}}{c_{n, \alpha}} |\boldsymbol \xi|^{-(n - \alpha)}</math> |<math> \frac{(2\pi)^{\frac{n}{2}}}{c_{n, \alpha}} |\boldsymbol \omega|^{-(n - \alpha)}</math> |<math> \frac{(2\pi)^{n}}{c_{n, \alpha}} |\boldsymbol \omega|^{-(n - \alpha)}</math> |See [[Riesz potential]] where the constant is given by{{br}}<math>c_{n, \alpha} = \pi^\frac{n}{2} 2^\alpha \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n - \alpha}{2}\right)}.</math>{{br}}The formula also holds for all {{math|''α'' ≠ ''n'', ''n'' + 2, ...}} by analytic continuation, but then the function and its Fourier transforms need to be understood as suitably regularized tempered distributions. See [[homogeneous distribution]].<ref group=note>In {{harvnb|Gelfand|Shilov|1964|p=363}}, with the non-unitary conventions of this table, the transform of <math>|\mathbf x|^\lambda</math> is given to be{{br}} <math>2^{\lambda+n}\pi^{\tfrac12 n}\frac{\Gamma\left(\frac{\lambda+n}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)}|\boldsymbol\omega|^{-\lambda-n}</math>{{br}}from which this follows, with <math>\lambda=-\alpha</math>.</ref> |- |503 |<math> \frac{1}{\left|\boldsymbol \sigma\right|\left(2\pi\right)^\frac{n}{2}} e^{-\frac{1}{2} \mathbf x^{\mathrm T} \boldsymbol \sigma^{-\mathrm T} \boldsymbol \sigma^{-1} \mathbf x}</math> |<math> e^{-2\pi^2 \boldsymbol \xi^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \xi} </math> |<math> (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \boldsymbol \omega^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \omega} </math> |<math> e^{-\frac{1}{2} \boldsymbol \omega^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \omega} </math> |This is the formula for a [[multivariate normal distribution]] normalized to 1 with a mean of 0. Bold variables are vectors or matrices. Following the notation of the aforementioned page, {{math|'''Σ''' {{=}} '''σ''' '''σ'''<sup>T</sup>}} and {{math|'''Σ'''<sup>−1</sup> {{=}} '''σ'''<sup>−T</sup> '''σ'''<sup>−1</sup>}} |- |504 |<math> e^{-2\pi\alpha|\mathbf x|}</math> | <math>\frac{c_n\alpha}{\left(\alpha^2+|\boldsymbol{\xi}|^2\right)^\frac{n+1}{2}}</math> |<math>\frac{c_n (2\pi)^{\frac{n+2}{2}} \alpha}{\left(4\pi^2\alpha^2+|\boldsymbol{\omega}|^2\right)^\frac{n+1}{2}}</math> |<math>\frac{c_n (2\pi)^{n+1} \alpha}{\left(4\pi^2\alpha^2+|\boldsymbol{\omega}|^2\right)^\frac{n+1}{2}}</math> |Here<ref>{{harvnb|Stein|Weiss|1971|p=6}}</ref>{{br}}<math>c_n=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^\frac{n+1}{2}},</math> {{math|Re(''α'') > 0}} |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic