Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Distributions, one-dimensional === The Fourier transforms in this table may be found in {{harvtxt|Erdélyi|1954}} or {{harvtxt|Kammler|2000|loc=appendix}}. {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- | |<math> f(x)\,</math> |<math>\begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |Definitions |- | 301 |<math> 1</math> |<math> \delta(\xi)</math> |<math> \sqrt{2\pi}\, \delta(\omega)</math> |<math> 2\pi\delta(\omega)</math> |The distribution {{math|''δ''(''ξ'')}} denotes the [[Dirac delta function]]. |- | 302 |<math> \delta(x)\,</math> |<math> 1</math> |<math> \frac{1}{\sqrt{2\pi}}\,</math> |<math> 1</math> |Dual of rule 301. |- | 303 |<math> e^{i a x}</math> |<math> \delta\left(\xi - \frac{a}{2\pi}\right)</math> |<math> \sqrt{2 \pi}\, \delta(\omega - a)</math> |<math> 2 \pi\delta(\omega - a)</math> |This follows from 103 and 301. |- | 304 |<math> \cos (a x)</math> |<math> \frac{ \delta\left(\xi - \frac{a}{2\pi}\right)+\delta\left(\xi+\frac{a}{2\pi}\right)}{2}</math> |<math> \sqrt{2 \pi}\,\frac{\delta(\omega-a)+\delta(\omega+a)}{2}</math> |<math> \pi\left(\delta(\omega-a)+\delta(\omega+a)\right)</math> |This follows from rules 101 and 303 using [[Euler's formula]]:{{br}}<math>\cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}.</math> |- | 305 |<math> \sin( ax)</math> |<math> \frac{\delta\left(\xi-\frac{a}{2\pi}\right)-\delta\left(\xi+\frac{a}{2\pi}\right)}{2i}</math> |<math> \sqrt{2 \pi}\,\frac{\delta(\omega-a)-\delta(\omega+a)}{2i}</math> |<math> -i\pi\bigl(\delta(\omega-a)-\delta(\omega+a)\bigr)</math> |This follows from 101 and 303 using{{br}}<math>\sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}.</math> |- | 306 |<math> \cos \left( a x^2 \right) </math> |<math> \sqrt{\frac{\pi}{a}} \cos \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) </math> |<math> \frac{1}{\sqrt{2 a}} \cos \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) </math> |<math> \sqrt{\frac{\pi}{a}} \cos \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right) </math> |This follows from 101 and 207 using{{br}}<math>\cos(a x^2) = \frac{e^{i a x^2} + e^{-i a x^2}}{2}.</math> |- | 307 |<math> \sin \left( a x^2 \right) </math> |<math> - \sqrt{\frac{\pi}{a}} \sin \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) </math> |<math> \frac{-1}{\sqrt{2 a}} \sin \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) </math> |<math> -\sqrt{\frac{\pi}{a}}\sin \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right)</math> |This follows from 101 and 207 using{{br}}<math>\sin(a x^2) = \frac{e^{i a x^2} - e^{-i a x^2}}{2i}.</math> |- |308 |<math> e^{-\pi i\alpha x^2}\,</math> |<math> \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\pi \xi^2}{\alpha}}</math> |<math> \frac{1}{\sqrt{2\pi \alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}}</math> |<math> \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}}</math> |Here it is assumed <math>\alpha</math> is real. For the case that alpha is complex see table entry 206 above. |- | 309 |<math> x^n\,</math> |<math> \left(\frac{i}{2\pi}\right)^n \delta^{(n)} (\xi)</math> |<math> i^n \sqrt{2\pi} \delta^{(n)} (\omega)</math> |<math> 2\pi i^n\delta^{(n)} (\omega)</math> |Here, {{mvar|n}} is a [[natural number]] and {{math|''δ''{{isup|(''n'')}}(''ξ'')}} is the {{mvar|n}}th distribution derivative of the Dirac delta function. This rule follows from rules 107 and 301. Combining this rule with 101, we can transform all [[polynomial]]s. |- | 310 |<math> \delta^{(n)}(x)</math> |<math> (i 2\pi \xi)^n</math> |<math> \frac{(i\omega)^n}{\sqrt{2\pi}} </math> |<math> (i\omega)^n</math> |Dual of rule 309. {{math|''δ''{{isup|(''n'')}}(''ξ'')}} is the {{mvar|n}}th distribution derivative of the Dirac delta function. This rule follows from 106 and 302. |- | 311 |<math> \frac{1}{x}</math> |<math> -i\pi\sgn(\xi)</math> |<math> -i\sqrt{\frac{\pi}{2}}\sgn(\omega)</math> |<math> -i\pi\sgn(\omega)</math> |Here {{math|sgn(''ξ'')}} is the [[sign function]]. Note that {{math|{{sfrac|1|''x''}}}} is not a distribution. It is necessary to use the [[Cauchy principal value]] when testing against [[Schwartz functions]]. This rule is useful in studying the [[Hilbert transform]]. |- | 312 |<math>\begin{align} &\frac{1}{x^n} \\ &:= \frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log |x| \end{align}</math> |<math> -i\pi \frac{(-i 2\pi \xi)^{n-1}}{(n-1)!} \sgn(\xi)</math> |<math> -i\sqrt{\frac{\pi}{2}}\, \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega)</math> |<math> -i\pi \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega)</math> |{{math|{{sfrac|1|''x''<sup>''n''</sup>}}}} is the [[homogeneous distribution]] defined by the distributional derivative{{br}}<math>\frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log|x|</math> |- | 313 |<math> |x|^\alpha</math> |<math> -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|2\pi\xi|^{\alpha+1}}</math> |<math> \frac{-2}{\sqrt{2\pi}}\, \frac{\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} </math> |<math> -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} </math> |This formula is valid for {{math|0 > ''α'' > −1}}. For {{math|''α'' > 0}} some singular terms arise at the origin that can be found by differentiating 320. If {{math|Re ''α'' > −1}}, then {{math|{{abs|''x''}}<sup>''α''</sup>}} is a locally integrable function, and so a tempered distribution. The function {{math|''α'' ↦ {{abs|''x''}}<sup>''α''</sup>}} is a holomorphic function from the right half-plane to the space of tempered distributions. It admits a unique meromorphic extension to a tempered distribution, also denoted {{math|{{abs|''x''}}<sup>''α''</sup>}} for {{math|''α'' ≠ −1, −3, ...}} (See [[homogeneous distribution]].) |- | <!-- Should we call it 313a ? Doesn't necessarily need a number, because it is a special case. --> |<math> \frac{1}{\sqrt{|x|}} </math> |<math> \frac{1}{\sqrt{|\xi|}} </math> |<math> \frac{1}{\sqrt{|\omega|}}</math> |<math> \frac{\sqrt{2\pi}}{\sqrt{|\omega|}} </math> | Special case of 313. |- | 314 |<math> \sgn(x)</math> |<math> \frac{1}{i\pi \xi}</math> |<math> \sqrt{\frac{2}{\pi}} \frac{1}{i\omega } </math> |<math> \frac{2}{i\omega }</math> |The dual of rule 311. This time the Fourier transforms need to be considered as a [[Cauchy principal value]]. |- | 315 |<math> u(x)</math> |<math> \frac{1}{2}\left(\frac{1}{i \pi \xi} + \delta(\xi)\right)</math> |<math> \sqrt{\frac{\pi}{2}} \left( \frac{1}{i \pi \omega} + \delta(\omega)\right)</math> |<math> \pi\left( \frac{1}{i \pi \omega} + \delta(\omega)\right)</math> |The function {{math|''u''(''x'')}} is the Heaviside [[Heaviside step function|unit step function]]; this follows from rules 101, 301, and 314. |- | 316 |<math> \sum_{n=-\infty}^{\infty} \delta (x - n T)</math> |<math> \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left( \xi -\frac{k }{T}\right)</math> |<math> \frac{\sqrt{2\pi }}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right)</math> |<math> \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right)</math> |This function is known as the [[Dirac comb]] function. This result can be derived from 302 and 102, together with the fact that{{br}}<math>\begin{align} & \sum_{n=-\infty}^{\infty} e^{inx} \\ = {}& 2\pi\sum_{k=-\infty}^{\infty} \delta(x+2\pi k) \end{align}</math>{{br}}as distributions. |- | 317 |<math> J_0 (x)</math> |<math> \frac{2\, \operatorname{rect}(\pi\xi)}{\sqrt{1 - 4 \pi^2 \xi^2}} </math> |<math> \sqrt{\frac{2}{\pi}} \, \frac{\operatorname{rect}\left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}} </math> |<math> \frac{2\,\operatorname{rect}\left(\frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}}</math> | The function {{math|''J''<sub>0</sub>(''x'')}} is the zeroth order [[Bessel function]] of first kind. |- | 318 |<math> J_n (x)</math> |<math> \frac{2 (-i)^n T_n (2 \pi \xi) \operatorname{rect}(\pi \xi)}{\sqrt{1 - 4 \pi^2 \xi^2}} </math> |<math> \sqrt{\frac{2}{\pi}} \frac{ (-i)^n T_n (\omega) \operatorname{rect} \left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}} </math> |<math> \frac{2(-i)^n T_n (\omega) \operatorname{rect} \left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}} </math> | This is a generalization of 317. The function {{math|''J<sub>n</sub>''(''x'')}} is the {{mvar|n}}th order [[Bessel function]] of first kind. The function {{math|''T<sub>n</sub>''(''x'')}} is the [[Chebyshev polynomials|Chebyshev polynomial of the first kind]]. |- | 319 |<math> \log \left| x \right|</math> |<math> -\frac{1}{2} \frac{1}{\left| \xi \right|} - \gamma \delta \left( \xi \right) </math> |<math> -\frac{\sqrt\frac{\pi}{2}}{\left| \omega \right|} - \sqrt{2 \pi} \gamma \delta \left( \omega \right) </math> |<math> -\frac{\pi}{\left| \omega \right|} - 2 \pi \gamma \delta \left( \omega \right) </math> |{{mvar|γ}} is the [[Euler–Mascheroni constant]]. It is necessary to use a finite part integral when testing {{math|{{sfrac|1|{{abs|''ξ''}}}}}} or {{math|{{sfrac|1|{{abs|''ω''}}}}}}against [[Schwartz functions]]. The details of this might change the coefficient of the delta function. |- | 320 |<math> \left( \mp ix \right)^{-\alpha}</math> |<math> \frac{\left(2\pi\right)^\alpha}{\Gamma\left(\alpha\right)}u\left(\pm \xi \right)\left(\pm \xi \right)^{\alpha-1} </math> |<math> \frac{\sqrt{2\pi}}{\Gamma\left(\alpha\right)}u\left(\pm\omega\right)\left(\pm\omega\right)^{\alpha-1} </math> |<math> \frac{2\pi}{\Gamma\left(\alpha\right)}u\left(\pm\omega\right)\left(\pm\omega\right)^{\alpha-1} </math> |This formula is valid for {{math|1 > ''α'' > 0}}. Use differentiation to derive formula for higher exponents. {{mvar|u}} is the Heaviside function. |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic