Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Square-integrable functions, one-dimensional === The Fourier transforms in this table may be found in {{harvtxt|Campbell|Foster|1948}}, {{harvtxt|Erdélyi|1954}}, or {{harvtxt|Kammler|2000|loc=appendix}}. {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- | |<math> f(x)\,</math> |<math>\begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |Definitions |- |{{anchor|rect}} 201 |<math> \operatorname{rect}(a x) \,</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\xi}{a}\right)</math> |<math> \frac{1}{\sqrt{2 \pi a^2}}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)</math> |The [[rectangular function|rectangular pulse]] and the ''normalized'' [[sinc function]], here defined as {{math|1=sinc(''x'') = {{sfrac|sin(π''x'')|π''x''}}}} |- | 202 |<math> \operatorname{sinc}(a x)\,</math> |<math> \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\xi}{a} \right)\,</math> |<math> \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right)</math> |<math> \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right)</math> |Dual of rule 201. The [[rectangular function]] is an ideal [[low-pass filter]], and the [[sinc function]] is the [[Anticausal system|non-causal]] impulse response of such a filter. The [[sinc function]] is defined here as {{math|1=sinc(''x'') = {{sfrac|sin(π''x'')|π''x''}}}} |- | 203 |<math> \operatorname{sinc}^2 (a x)</math> |<math> \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\xi}{a} \right) </math> |<math> \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) </math> |<math> \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) </math> | The function {{math|tri(''x'')}} is the [[triangular function]] |- | 204 |<math> \operatorname{tri} (a x)</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}^2 \left( \frac{\xi}{a} \right) \,</math> |<math> \frac{1}{\sqrt{2\pi a^2}} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) </math> |<math> \frac{1}{|a|} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) </math> | Dual of rule 203. |- | 205 |<math> e^{- a x} u(x) \,</math> |<math> \frac{1}{a + i 2\pi \xi}</math> |<math> \frac{1}{\sqrt{2 \pi} (a + i \omega)}</math> |<math> \frac{1}{a + i \omega}</math> |The function {{math|''u''(''x'')}} is the [[Heaviside step function|Heaviside unit step function]] and {{math|''a'' > 0}}. |- | 206 |<math> e^{-\alpha x^2}\,</math> |<math> \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{(\pi \xi)^2}{\alpha}}</math> |<math> \frac{1}{\sqrt{2 \alpha}}\, e^{-\frac{\omega^2}{4 \alpha}}</math> |<math> \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{\omega^2}{4 \alpha}}</math> |This shows that, for the unitary Fourier transforms, the [[Gaussian function]] {{math|''e''<sup>−''αx''<sup>2</sup></sup>}} is its own Fourier transform for some choice of {{mvar|α}}. For this to be integrable we must have {{math|Re(''α'') > 0}}. |- | 208 |<math> e^{-a|x|} \,</math> |<math> \frac{2 a}{a^2 + 4 \pi^2 \xi^2} </math> |<math> \sqrt{\frac{2}{\pi}} \, \frac{a}{a^2 + \omega^2} </math> |<math> \frac{2a}{a^2 + \omega^{2}} </math> |For {{math|Re(''a'') > 0}}. That is, the Fourier transform of a [[Laplace distribution|two-sided decaying exponential function]] is a [[Lorentzian function]]. |- | 209 |<math> \operatorname{sech}(a x) \,</math> |<math> \frac{\pi}{a} \operatorname{sech} \left( \frac{\pi^2}{ a} \xi \right)</math> |<math> \frac{1}{a}\sqrt{\frac{\pi}{2}} \operatorname{sech}\left( \frac{\pi}{2 a} \omega \right)</math> |<math> \frac{\pi}{a}\operatorname{sech}\left( \frac{\pi}{2 a} \omega \right)</math> |[[Hyperbolic function|Hyperbolic secant]] is its own Fourier transform |- | 210 |<math> e^{-\frac{a^2 x^2}2} H_n(a x)\,</math> |<math> \frac{\sqrt{2\pi}(-i)^n}{a} e^{-\frac{2\pi^2\xi^2}{a^2}} H_n\left(\frac{2\pi\xi}a\right)</math> |<math> \frac{(-i)^n}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a\right)</math> |<math> \frac{(-i)^n \sqrt{2\pi}}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a \right)</math> |{{math|''H<sub>n</sub>''}} is the {{mvar|n}}th-order [[Hermite polynomial]]. If {{math|''a'' {{=}} 1}} then the Gauss–Hermite functions are [[eigenfunction]]s of the Fourier transform operator. For a derivation, see [[Hermite polynomials#Hermite functions as eigenfunctions of the Fourier transform|Hermite polynomial]]. The formula reduces to 206 for {{math|''n'' {{=}} 0}}. |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic