Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Zeeman effect
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Strong field (Paschen–Back effect)== The Paschen–Back effect is the splitting of atomic energy levels in the presence of a strong magnetic field. This occurs when an external magnetic field is sufficiently strong to disrupt the coupling between orbital (<math>\vec{L}</math>) and spin (<math>\vec{S}</math>) angular momenta. This effect is the strong-field limit of the Zeeman effect. When <math>s = 0</math>, the two effects are equivalent. The effect was named after the German physicists [[Friedrich Paschen]] and [[Ernst Emil Alexander Back|Ernst E. A. Back]].<ref>{{cite journal |last1=Paschen |first1=F. |last2=Back |first2=E. |title=Liniengruppen magnetisch vervollständigt |journal=Physica |date=1921 |volume=1 |pages=261–273 |trans-title=Line groups magnetically completed [i.e., completely resolved] |language=German}} Available at: [https://www.lorentz.leidenuniv.nl/history/proefschriften/Physica/Physica_1_1921_05391.pdf Leiden University (Netherlands)]</ref> When the magnetic-field perturbation significantly exceeds the spin–orbit interaction, one can safely assume <math>[H_{0}, S] = 0</math>. This allows the expectation values of <math>L_{z}</math> and <math>S_{z}</math> to be easily evaluated for a state <math>|\psi\rangle </math>. The energies are simply :<math> E_{z} = \left\langle \psi \left| H_{0} + \frac{B_{z}\mu_{\rm B}}{\hbar}(L_{z}+g_{s}S_z) \right|\psi\right\rangle = E_{0} + B_z\mu_{\rm B} (m_l + g_{s}m_s). </math> The above may be read as implying that the LS-coupling is completely broken by the external field. However, <math>m_l</math> and <math>m_s</math> are still "good" quantum numbers. Together with the [[selection rule]]s for an [[electric dipole transition]], i.e., <math>\Delta s = 0, \Delta m_s = 0, \Delta l = \pm 1, \Delta m_l = 0, \pm 1</math> this allows to ignore the spin degree of freedom altogether. As a result, only three spectral lines will be visible, corresponding to the <math>\Delta m_l = 0, \pm 1</math> selection rule. The splitting <math>\Delta E = B \mu_{\rm B} \Delta m_l</math> is ''independent'' of the unperturbed energies and electronic configurations of the levels being considered. More precisely, if <math>s \ne 0</math>, each of these three components is actually a group of several transitions due to the residual spin–orbit coupling and relativistic corrections (which are of the same order, known as 'fine structure'). The first-order perturbation theory with these corrections yields the following formula for the hydrogen atom in the Paschen–Back limit:<ref>{{cite book |author=Griffiths, David J. |title=Introduction to Quantum Mechanics |date=2004 |publisher=[[Prentice Hall]] |isbn=0-13-111892-7 |edition=2nd |page=280 |oclc=40251748}}</ref> :<math> E_{z+fs} = E_{z} + \frac{m_e c^2 \alpha^4}{2 n^3} \left\{ \frac{3}{4n} - \left[ \frac{l(l+1) - m_l m_s}{l(l+1/2)(l+1) } \right]\right\}.</math> ===Example: Lyman-alpha transition in hydrogen=== In this example, the fine-structure corrections are ignored. {| class="wikitable" |+Dipole-allowed Lyman-alpha transitions in the strong-field regime !Initial state (<math>n=2,l=1</math>) <math>\mid m_l, m_{s}\rangle</math> !Initial energy perturbation !Final state (<math>n=1,l=0</math>) <math>\mid m_l, m_{s}\rangle</math> !Final energy perturbation |- |<math>\left| 1, \frac{1}{2}\right\rangle</math> |<math>+2\mu_{\rm B}B_{z}</math> |<math>\left| 0, \frac{1}{2}\right\rangle</math> |<math>+\mu_{\rm B}B_{z}</math> |- |<math>\left| 0, \frac{1}{2}\right\rangle</math> |<math>+\mu_{\rm B}B_{z} </math> |<math>\left| 0, \frac{1}{2}\right\rangle</math> |<math>+\mu_{\rm B}B_{z}</math> |- |<math>\left| 1, -\frac{1}{2}\right\rangle</math> |<math>0 </math> |<math>\left| 0, -\frac{1}{2}\right\rangle</math> |<math>-\mu_{\rm B}B_{z}</math> |- |<math>\left| -1, \frac{1}{2}\right\rangle</math> |<math>0 </math> |<math>\left| 0, \frac{1}{2}\right\rangle</math> |<math>+\mu_{\rm B}B_{z}</math> |- |<math>\left| 0, -\frac{1}{2}\right\rangle</math> |<math>-\mu_{\rm B}B_{z} </math> |<math>\left| 0, -\frac{1}{2}\right\rangle</math> |<math>-\mu_{\rm B}B_{z}</math> |- |<math>\left| -1, -\frac{1}{2}\right\rangle</math> |<math>-2\mu_{\rm B}B_{z} </math> |<math>\left| 0, -\frac{1}{2}\right\rangle</math> |<math>-\mu_{\rm B}B_{z}</math> |} :
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Zeeman effect
(section)
Add topic