Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Topological vector space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Defining topologies using strings=== Let <math>X</math> be a vector space and let <math>U_{\bull} = \left(U_i\right)_{i = 1}^{\infty}</math> be a sequence of subsets of <math>X.</math> Each set in the sequence <math>U_{\bull}</math> is called a '''{{visible anchor|knot}}''' of <math>U_{\bull}</math> and for every index <math>i,</math> <math>U_i</math> is called the '''<math>i</math>-th knot''' of <math>U_{\bull}.</math> The set <math>U_1</math> is called the '''beginning''' of <math>U_{\bull}.</math> The sequence <math>U_{\bull}</math> is/is a:{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}}{{sfn|Schechter|1996|pp=721-751}}{{sfn|Narici|Beckenstein|2011|pp=371-423}} * '''{{visible anchor|Summative}}''' if <math>U_{i+1} + U_{i+1} \subseteq U_i</math> for every index <math>i.</math> * '''[[Balanced set|Balanced]]''' (resp. '''[[Absorbing set|absorbing]]''', '''closed''',<ref group="note">The topological properties of course also require that <math>X</math> be a TVS.</ref> '''convex''', '''open''', '''[[Symmetric set|symmetric]]''', '''[[Barrelled space|barrelled]]''', '''[[Absolutely convex set|absolutely convex/disked]]''', etc.) if this is true of every <math>U_i.</math> * '''{{visible anchor|String}}''' if <math>U_{\bull}</math> is summative, absorbing, and balanced. * '''{{visible anchor|Topological string}}''' or a '''{{visible anchor|neighborhood string}}''' in a TVS <math>X</math> if <math>U_{\bull}</math> is a string and each of its knots is a neighborhood of the origin in <math>X.</math> <!-------- START: REMOVED DEFINTION -------------- '''Definition''' ('''Ultrabarrel'''/'''suprabarrel'''): A subset of a TVS <math>X</math> is called an '''ultrabarrel''' (resp. '''suprabarrel''') if it is the beginning of some closed string (resp. of some string) in <math>X.</math> ----------- END: REMOVED DEFINTION ---------------> If <math>U</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in a vector space <math>X</math> then the sequence defined by <math>U_i := 2^{1-i} U</math> forms a string beginning with <math>U_1 = U.</math> This is called the '''natural string of <math>U</math>'''{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}} Moreover, if a vector space <math>X</math> has countable dimension then every string contains an [[Absolutely convex set|absolutely convex]] string. Summative sequences of sets have the particularly nice property that they define non-negative continuous real-valued [[subadditive]] functions. These functions can then be used to prove many of the basic properties of topological vector spaces. {{Math theorem|name=Theorem|note=<math>\R</math>-valued function induced by a string|math_statement= Let <math>U_{\bull} = \left(U_i\right)_{i=0}^{\infty}</math> be a collection of subsets of a vector space such that <math>0 \in U_i</math> and <math>U_{i+1} + U_{i+1} \subseteq U_i</math> for all <math>i \geq 0.</math> For all <math>u \in U_0,</math> let <math display=block>\mathbb{S}(u) := \left\{n_{\bull} = \left(n_1, \ldots, n_k\right) ~:~ k \geq 1, n_i \geq 0 \text{ for all } i, \text{ and } u \in U_{n_1} + \cdots + U_{n_k}\right\}.</math> Define <math>f : X \to [0, 1]</math> by <math>f(x) = 1</math> if <math>x \not\in U_0</math> and otherwise let <math display=block>f(x) := \inf_{} \left\{2^{- n_1} + \cdots 2^{- n_k} ~:~ n_{\bull} = \left(n_1, \ldots, n_k\right) \in \mathbb{S}(x)\right\}.</math> Then <math>f</math> is subadditive (meaning <math>f(x + y) \leq f(x) + f(y)</math> for all <math>x, y \in X</math>) and <math>f = 0</math> on <math display=inline>\bigcap_{i \geq 0} U_i;</math> so in particular, <math>f(0) = 0.</math> If all <math>U_i</math> are [[symmetric set]]s then <math>f(-x) = f(x)</math> and if all <math>U_i</math> are balanced then <math>f(s x) \leq f(x)</math> for all scalars <math>s</math> such that <math>|s| \leq 1</math> and all <math>x \in X.</math> If <math>X</math> is a topological vector space and if all <math>U_i</math> are neighborhoods of the origin then <math>f</math> is continuous, where if in addition <math>X</math> is Hausdorff and <math>U_{\bull}</math> forms a basis of balanced neighborhoods of the origin in <math>X</math> then <math>d(x, y) := f(x - y)</math> is a metric defining the vector topology on <math>X.</math> <!--- This theorem is true more generally for commutative additive [[topological group]]s. ---> }} A proof of the above theorem is given in the article on [[Metrizable topological vector space#Additive sequences|metrizable topological vector spaces]]. If <math>U_{\bull} = \left(U_i\right)_{i \in \N}</math> and <math>V_{\bull} = \left(V_i\right)_{i \in \N}</math> are two collections of subsets of a vector space <math>X</math> and if <math>s</math> is a scalar, then by definition:{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}} * <math>V_{\bull}</math> '''contains''' <math>U_{\bull}</math>: <math>\ U_{\bull} \subseteq V_{\bull}</math> if and only if <math>U_i \subseteq V_i</math> for every index <math>i.</math> * '''Set of knots''': <math>\ \operatorname{Knots} U_{\bull} := \left\{U_i : i \in \N\right\}.</math> * '''Kernel''': <math display=inline>\ \ker U_{\bull} := \bigcap_{i \in \N} U_i.</math> * '''Scalar multiple''': <math>\ s U_{\bull} := \left(s U_i\right)_{i \in \N}.</math> * '''Sum''': <math>\ U_{\bull} + V_{\bull} := \left(U_i + V_i\right)_{i \in \N}.</math> * '''Intersection''': <math>\ U_{\bull} \cap V_{\bull} := \left(U_i \cap V_i\right)_{i \in \N}.</math> If <math>\mathbb{S}</math> is a collection sequences of subsets of <math>X,</math> then <math>\mathbb{S}</math> is said to be '''directed''' ('''downwards''') '''under inclusion''' or simply '''directed downward''' if <math>\mathbb{S}</math> is not empty and for all <math>U_{\bull}, V_{\bull} \in \mathbb{S},</math> there exists some <math>W_{\bull} \in \mathbb{S}</math> such that <math>W_{\bull} \subseteq U_{\bull}</math> and <math>W_{\bull} \subseteq V_{\bull}</math> (said differently, if and only if <math>\mathbb{S}</math> is a [[Filter (set theory)|prefilter]] with respect to the containment <math>\,\subseteq\,</math> defined above). '''Notation''': Let <math display=inline>\operatorname{Knots} \mathbb{S} := \bigcup_{U_{\bull} \in \mathbb{S}} \operatorname{Knots} U_{\bull}</math> be the set of all knots of all strings in <math>\mathbb{S}.</math> Defining vector topologies using collections of strings is particularly useful for defining classes of TVSs that are not necessarily locally convex. {{Math theorem|name=Theorem{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}}|note=Topology induced by strings|math_statement=If <math>(X, \tau)</math> is a topological vector space then there exists a set <math>\mathbb{S}</math><ref group=proof>This condition is satisfied if <math>\mathbb{S}</math> denotes the set of all topological strings in <math>(X, \tau).</math></ref> of neighborhood strings in <math>X</math> that is directed downward and such that the set of all knots of all strings in <math>\mathbb{S}</math> is a [[neighborhood basis]] at the origin for <math>(X, \tau).</math> Such a collection of strings is said to be {{em|<math>\tau</math> '''fundamental'''}}. Conversely, if <math>X</math> is a vector space and if <math>\mathbb{S}</math> is a collection of strings in <math>X</math> that is directed downward, then the set <math>\operatorname{Knots} \mathbb{S}</math> of all knots of all strings in <math>\mathbb{S}</math> forms a [[neighborhood basis]] at the origin for a vector topology on <math>X.</math> In this case, this topology is denoted by <math>\tau_\mathbb{S}</math> and it is called the '''topology generated by <math>\mathbb{S}.</math>''' }} If <math>\mathbb{S}</math> is the set of all topological strings in a TVS <math>(X, \tau)</math> then <math>\tau_{\mathbb{S}} = \tau.</math>{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}} A Hausdorff TVS is [[Metrizable topological vector space|metrizable]] [[if and only if]] its topology can be induced by a single topological string.{{sfn|Adasch|Ernst|Keim|1978|pp=10-15}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Topological vector space
(section)
Add topic